Nonlinear vibration of piezoelectric nanoplates using nonlocal Mindlin plate theory

ABSTRACT This article investigates the nonlinear vibration of piezoelectric nanoplate with combined thermo-electric loads under various boundary conditions. The piezoelectric nanoplate model is developed by using the Mindlin plate theory and nonlocal theory. The von Karman type nonlinearity and nonlocal constitutive relationships are employed to derive governing equations through Hamilton's principle. The differential quadrature method is used to discretize the governing equations, which are then solved through a direct iterative method. A detailed parametric study is conducted to examine the effects of the nonlocal parameter, external electric voltage, and temperature rise on the nonlinear vibration characteristics of piezoelectric nanoplates.

[1]  J. Reddy Nonlocal nonlinear formulations for bending of classical and shear deformation theories of beams and plates , 2010 .

[2]  V. Varadan,et al.  Application of nonlocal elastic shell theory in wave propagation analysis of carbon nanotubes , 2007 .

[3]  Hui‐Shen Shen,et al.  Nonlocal plate model for nonlinear bending of bilayer graphene sheets subjected to transverse loads in thermal environments , 2013 .

[4]  A. Eringen On differential equations of nonlocal elasticity and solutions of screw dislocation and surface waves , 1983 .

[5]  Kaifa Wang,et al.  The electromechanical coupling behavior of piezoelectric nanowires: Surface and small-scale effects , 2012 .

[6]  Hui‐Shen Shen,et al.  Torsional buckling and postbuckling of double-walled carbon nanotubes by nonlocal shear deformable shell model , 2010 .

[7]  A. G. Arani,et al.  Nonlinear vibration of embedded SWBNNTs based on nonlocal Timoshenko beam theory using DQ method , 2012 .

[8]  Quan Wang,et al.  Axi-symmetric wave propagation in a cylinder coated with a piezoelectric layer , 2002 .

[9]  S. C. Pradhan,et al.  Small scale effect on the buckling analysis of single-layered graphene sheet embedded in an elastic medium based on nonlocal plate theory , 2010 .

[10]  S. C. Pradhan,et al.  Vibration analysis of orthotropic graphene sheets using nonlocal elasticity theory and differential quadrature method , 2011 .

[11]  S. Kitipornchai,et al.  Thermo-electro-mechanical vibration of piezoelectric nanoplates based on the nonlocal theory , 2013 .

[12]  A. Farajpour,et al.  Thermo-electro-mechanical vibration of coupled piezoelectric-nanoplate systems under non-uniform voltage distribution embedded in Pasternak elastic medium , 2014 .

[13]  A. Farajpour,et al.  Nonlinear vibration analysis of piezoelectric nanoelectromechanical resonators based on nonlocal elasticity theory , 2014 .

[14]  C. Shu Differential Quadrature and Its Application in Engineering , 2000 .

[15]  M. Sobhy,et al.  Nonlocal elasticity theory for thermal buckling of nanoplates lying on Winkler–Pasternak elastic substrate medium , 2013 .

[16]  S. Kitipornchai,et al.  Nonlinear free vibration of embedded double-walled carbon nanotubes based on nonlocal Timoshenko beam theory , 2009 .

[17]  Le-le Zhang,et al.  Effects of surface piezoelectricity and nonlocal scale on wave propagation in piezoelectric nanoplates , 2014 .

[18]  Chen Liu,et al.  Free vibration of nonlocal piezoelectric nanoplates under various boundary conditions , 2015 .

[19]  Hui‐Shen Shen Nonlocal shear deformable shell model for torsional buckling and postbuckling of microtubules in thermal environments , 2013 .

[20]  Zhong Lin Wang,et al.  One-dimensional ZnO nanostructures: Solution growth and functional properties , 2011 .

[21]  R. Ansari,et al.  Vibration characteristics of embedded multi-layered graphene sheets with different boundary conditions via nonlocal elasticity , 2011 .

[22]  A. Farajpour,et al.  Influence of initial stress on the vibration of double-piezoelectric-nanoplate systems with various boundary conditions using DQM , 2014 .

[23]  R. Nazemnezhad,et al.  AN EXACT ANALYTICAL APPROACH FOR FREE VIBRATION OF MINDLIN RECTANGULAR NANO-PLATES VIA NONLOCAL ELASTICITY , 2013 .

[24]  Zhong Lin Wang,et al.  Nanobelts of Semiconducting Oxides , 2001, Science.

[25]  J. M. Gray,et al.  High-Q GaN nanowire resonators and oscillators , 2007 .

[26]  Y. S. Zhang,et al.  Size dependence of Young's modulus in ZnO nanowires. , 2006, Physical review letters.

[27]  A. Eringen,et al.  Nonlocal Continuum Field Theories , 2002 .

[28]  L. Ke,et al.  Nonlinear vibration of the piezoelectric nanobeams based on the nonlocal theory , 2012 .

[29]  R. Cook,et al.  Diameter-Dependent Radial and Tangential Elastic Moduli of ZnO Nanowires , 2007 .

[30]  R. Kolahchi,et al.  Electro-thermo-torsional buckling of an embedded armchair DWBNNT using nonlocal shear deformable shell model , 2013 .

[31]  M. E. Golmakani,et al.  Nonlinear bending analysis of orthotropic nanoscale plates in an elastic matrix based on nonlocal continuum mechanics , 2014 .

[32]  Zhong Lin Wang ZnO Nanowire and Nanobelt Platform for Nanotechnology , 2009 .

[33]  Zhong Lin Wang,et al.  Piezoelectric gated diode of a single zno nanowire , 2007 .

[34]  Le Shen,et al.  Nonlocal plate model for nonlinear vibration of single layer graphene sheets in thermal environments , 2010 .

[35]  Jie Yang,et al.  Nonlinear free vibration of single-walled carbon nanotubes using nonlocal Timoshenko beam theory , 2010 .

[36]  Jie Yang,et al.  Buckling and post-buckling of size-dependent piezoelectric Timoshenko nanobeams subject to thermo-electro-mechanical loadings , 2014 .

[37]  A. C. Eringen,et al.  Nonlocal polar elastic continua , 1972 .

[38]  Marek Pietrzakowski,et al.  Piezoelectric control of composite plate vibration: Effect of electric potential distribution , 2008 .

[39]  M. Ganapathi,et al.  Nonlinear free flexural vibrations of functionally graded rectangular and skew plates under thermal environments , 2005 .

[40]  A. G. Arani,et al.  Electro-thermo-mechanical buckling of DWBNNTs embedded in bundle of CNTs using nonlocal piezoelasticity cylindrical shell theory , 2012 .

[41]  A. G. Arani,et al.  Nonlocal vibration of SWBNNT embedded in bundle of CNTs under a moving nanoparticle , 2012 .

[42]  M. Sobhy Thermomechanical bending and free vibration of single-layered graphene sheets embedded in an elastic medium , 2014 .

[43]  S. Lee,et al.  Electro-elastic analysis of piezoelectric laminated plates , 2007 .

[44]  Jie Yang,et al.  Nonlinear vibration of nonlocal piezoelectric nanoplates , 2015 .

[45]  Gregory J. Ehlert,et al.  Effect of ZnO nanowire morphology on the interfacial strength of nanowire coated carbon fibers , 2011 .