Studying Genetic Code by a Matrix Approach

AbstractFollowing Petoukhov and his collaborators, we use two length n zero-one sequences, α and β, to represent a length n genetic sequence ${\alpha\choose\beta}$ so that the columns of ${\alpha\choose\beta}$ have the following correspondence with the nucleotides: $C\sim{0\choose0}$ , $U\sim{1\choose0}$ , $G\sim{1\choose1}$ , $A\sim{0\choose1}$ . Using the Gray code ordering to arrange α and β, we build a 2n×2n matrix Cn including all the 4n length n genetic sequences. Furthermore, we use the Hamming distance of α and β to construct a 2n×2n matrix Dn. We explore structures of these matrices, refine the results in earlier papers, and propose new directions for further research.

[1]  A. Nandy,et al.  A new graphical representation and analysis of DNA sequence structure. I: Methodology and application to globin genes , 1994 .

[2]  Ziheng Yang Phylogenetic analysis using parsimony and likelihood methods , 1996, Journal of Molecular Evolution.

[3]  Sergei V. Petoukhov,et al.  Genetic code, hamming distance and stochastic matrices , 2004, Bulletin of mathematical biology.

[4]  P. M. Leong,et al.  Random walk and gap plots of DNA sequences , 1995, Comput. Appl. Biosci..

[5]  T Pöschel,et al.  The hypercube structure of the genetic code explains conservative and non-conservative aminoacid substitutions in vivo and in vitro. , 2002, Bio Systems.

[6]  S. Freeland,et al.  The Case for an Error Minimizing Standard Genetic Code , 2003, Origins of life and evolution of the biosphere.

[7]  Laurence D. Hurst,et al.  A quantitative measure of error minimization in the genetic code , 1991, Journal of Molecular Evolution.

[8]  M. Gates A simple way to look at DNA. , 1986, Journal of theoretical biology.

[9]  A. Goldberg,et al.  Genetic Code: Aspects of Organization , 1966, Science.

[10]  C. Alff-Steinberger,et al.  The genetic code and error transmission. , 1969, Proceedings of the National Academy of Sciences of the United States of America.

[11]  John H. Reif,et al.  Alternative Computational Models: A Comparison of Biomolecular and Quantum Computation , 1998, FSTTCS.

[12]  Alan Tucker,et al.  Applied Combinatorics , 1980 .

[13]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[14]  Patricio Jeraldo,et al.  The Genetic Code , 2006 .

[15]  R. Swanson A unifying concept for the amino acid code. , 1984, Bulletin of mathematical biology.

[16]  D Penny,et al.  Parsimony, likelihood, and the role of models in molecular phylogenetics. , 2000, Molecular biology and evolution.

[17]  T. M. Sonneborn Degeneracy of the Genetic Code: Extent, Nature, and Genetic Implications , 1965 .

[18]  Matthew He Genetic code, attributive mappings and stochastic matrices , 2004, Bulletin of mathematical biology.