Improving the pseudo-randomness properties of chaotic maps using deep-zoom.

A generalized method is proposed to compose new orbits from a given chaotic map. The method provides an approach to examine discrete-time chaotic maps in a "deep-zoom" manner by using k-digits to the right from the decimal separator of a given point from the underlying chaotic map. Interesting phenomena have been identified. Rapid randomization was observed, i.e., chaotic patterns tend to become indistinguishable when compared to the original orbits of the underlying chaotic map. Our results were presented using different graphical analyses (i.e., time-evolution, bifurcation diagram, Lyapunov exponent, Poincaré diagram, and frequency distribution). Moreover, taking advantage of this randomization improvement, we propose a Pseudo-Random Number Generator (PRNG) based on the k-logistic map. The pseudo-random qualities of the proposed PRNG passed both tests successfully, i.e., DIEHARD and NIST, and were comparable with other traditional PRNGs such as the Mersenne Twister. The results suggest that simple maps such as the logistic map can be considered as good PRNG methods.

[1]  Takuji Nishimura,et al.  Mersenne twister: a 623-dimensionally equidistributed uniform pseudo-random number generator , 1998, TOMC.

[2]  Lingfeng Liu,et al.  Pseudorandom sequence generator based on the Chen chaotic system , 2013, Comput. Phys. Commun..

[3]  Gonzalo Álvarez,et al.  Some Basic Cryptographic Requirements for Chaos-Based Cryptosystems , 2003, Int. J. Bifurc. Chaos.

[4]  H. Zeng,et al.  Quantum random-number generator based on a photon-number-resolving detector , 2011 .

[5]  Odemir Martinez Bruno,et al.  Fast, parallel and secure cryptography algorithm using Lorenz's attractor , 2010, ArXiv.

[6]  Lequan Min,et al.  Analysis of FIPS 140-2 Test and Chaos-Based Pseudorandom Number Generator , 2013 .

[7]  Marco Tomassini,et al.  On the Generation of High-Quality Random Numbers by Two-Dimensional Cellular Automata , 2000, IEEE Trans. Computers.

[8]  Dawei Zhao,et al.  Statistical physics of vaccination , 2016, ArXiv.

[9]  J. Eckmann,et al.  Iterated maps on the interval as dynamical systems , 1980 .

[10]  E. Ott Chaos in Dynamical Systems: Contents , 1993 .

[11]  Donald Ervin Knuth,et al.  The Art of Computer Programming, Volume II: Seminumerical Algorithms , 1970 .

[12]  E. Ott Chaos in Dynamical Systems: Contents , 2002 .

[13]  Mads Haahr June random . org : Introduction to Randomness and Random Numbers , 2009 .

[14]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[15]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[16]  S. Li,et al.  Cryptographic requirements for chaotic secure communications , 2003, nlin/0311039.

[17]  Amir Akhavan,et al.  Pseudo random number generator based on quantum chaotic map , 2014, Commun. Nonlinear Sci. Numer. Simul..

[18]  Lequan Min,et al.  Study on Pseudorandomness of Some Pseudorandom Number Generators with Application , 2013, 2013 Ninth International Conference on Computational Intelligence and Security.

[19]  W. T. Holman,et al.  An integrated analog/digital random noise source , 1997 .

[20]  Odemir Martinez Bruno,et al.  Chaotic encryption method based on life-like cellular automata , 2011, Expert Syst. Appl..

[21]  Michael Frankfurter,et al.  Numerical Recipes In C The Art Of Scientific Computing , 2016 .

[22]  I. Kanter,et al.  An optical ultrafast random bit generator , 2010 .

[23]  M. Silverman,et al.  Tests of alpha-, beta-, and electron capture decays for randomness , 1999 .

[24]  Stephen Wolfram Cryptography with Cellular Automata , 1985, CRYPTO.

[25]  Liu Nian-sheng,et al.  Pseudo-randomness and complexity of binary sequences generated by the chaotic system , 2011 .

[26]  Shujun Li,et al.  Statistical Properties of Digital Piecewise Linear Chaotic Maps and Their Roles in Cryptography and Pseudo-Random Coding , 2001, IMACC.

[27]  Jason Spencer Pseudorandom Bit Generators from Enhanced Cellular Automata , 2015, J. Cell. Autom..

[28]  Dominique Barchiesi,et al.  Pseudo-random number generator based on mixing of three chaotic maps , 2014, Commun. Nonlinear Sci. Numer. Simul..

[29]  L. Kocarev Chaos-based cryptography: a brief overview , 2001 .

[30]  John Von Neumann Random Numbers Generation Using Quantum Physics , .

[31]  Jürgen Lehn,et al.  A non-linear congruential pseudo random number generator , 1986 .

[32]  George Markowsky,et al.  The Sad History of Random Bits , 2014, J. Cyber Secur. Mobil..

[33]  Lingfeng Liu,et al.  Counteracting the dynamical degradation of digital chaos via hybrid control , 2014, Commun. Nonlinear Sci. Numer. Simul..

[34]  R. Povinelli,et al.  Analyzing Logistic Map Pseudorandom Number Generators for Periodicity Induced by Finite Precision Floating-Point Representation , 2012 .

[35]  N. Metropolis,et al.  The Monte Carlo method. , 1949 .

[36]  Vinod Patidar,et al.  A Pseudo Random Bit Generator Based on Chaotic Logistic Map and its Statistical Testing , 2009, Informatica.

[37]  Yu-Guang Yang,et al.  Novel pseudo-random number generator based on quantum random walks , 2016, Scientific Reports.

[38]  Persi Diaconis,et al.  c ○ 2007 Society for Industrial and Applied Mathematics Dynamical Bias in the Coin Toss ∗ , 2022 .

[39]  B. Hao,et al.  Elementary Symbolic Dynamics And Chaos In Dissipative Systems , 1989 .

[40]  Ralph Erskine,et al.  Alan Turing: the Enigma - Book Reviem , 1984, Cryptologia.

[41]  Alberto Peinado,et al.  Generation of pseudorandom binary sequences by means of linear feedback shift registers (LFSRs) with dynamic feedback , 2013, Math. Comput. Model..

[42]  Amir Akhavan,et al.  A novel dynamic model of pseudo random number generator , 2011, J. Comput. Appl. Math..

[43]  A. Uchida,et al.  Fast physical random bit generation with chaotic semiconductor lasers , 2008 .

[44]  David Arroyo Guardeño Framework for the analysis and design of encryption strategies based on discrete-time chaotic dynamical systems , 2009 .

[45]  İsmail Öztürk,et al.  A novel method for producing pseudo random numbers from differential equation-based chaotic systems , 2015 .

[46]  Alessandro Trifiletti,et al.  A High-Speed Oscillator-Based Truly Random Number Source for Cryptographic Applications on a Smart Card IC , 2003, IEEE Trans. Computers.

[47]  Bernard De Baets,et al.  A dynamical systems approach to the discrimination of the modes of operation of cryptographic systems , 2015, Commun. Nonlinear Sci. Numer. Simul..

[48]  M. Baptista Cryptography with chaos , 1998 .

[49]  A. Akhavan,et al.  An image encryption scheme based on quantum logistic map , 2012 .

[50]  Pawel Dabal,et al.  A chaos-based pseudo-random bit generator implemented in FPGA device , 2011, 14th IEEE International Symposium on Design and Diagnostics of Electronic Circuits and Systems.

[51]  G. Álvarez,et al.  Cryptanalysis of an ergodic chaotic cipher , 2003 .

[52]  Xiongfeng Ma,et al.  Ultrafast quantum random number generation based on quantum phase fluctuations. , 2011, Optics express.