Real-time, adaptive, model-independent control of low-dimensional chaotic and nonchaotic dynamical systems

Current model-independent control techniques are limited, from a practical standpoint, by their dependence on a precontrol learning stage. Here we develop a model-independent control technique, for chaotic and nonchaotic low-dimensional dynamical systems, that operates in real-time (i.e., it does not require a learning stage). We show that this technique is adaptive to system nonstationarities, robust to noise, and capable of stabilizing higher-order unstable periodic orbits. Because this technique is real-time, adaptive, and model-independent, it is practical for real-world systems.

[1]  Joshua E. S. Socolar,et al.  Stability of periodic orbits controlled by time-delay feedback , 1995, chao-dyn/9510019.

[2]  Hunt Stabilizing high-period orbits in a chaotic system: The diode resonator. , 1991, Physical review letters.

[3]  Kestutis Pyragas,et al.  Experimental control of chaos by delayed self-controlling feedback , 1993 .

[4]  Eyad H. Abed,et al.  Feedback Control of Bifurcation and Chaos in Dynamical Systems , 1993 .

[5]  Gauthier,et al.  Stabilizing unstable periodic orbits in fast dynamical systems. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[6]  G. Hu,et al.  Controlling chaos via continuous feedback , 1993 .

[7]  Austin Blaquière,et al.  Nonlinear System Analysis , 1966 .

[8]  L Glass,et al.  Alternans and period-doubling bifurcations in atrioventricular nodal conduction. , 1995, Journal of theoretical biology.

[9]  Valery Petrov,et al.  Controlling chaos in the Belousov—Zhabotinsky reaction , 1993, Nature.

[10]  Maciej J. Ogorzalek,et al.  Taming Chaos: Part 11-Control , 1993 .

[11]  Martienssen,et al.  Controlling chaos experimentally in systems exhibiting large effective Lyapunov exponents. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[12]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[13]  Christini,et al.  Experimental control of high-dimensional chaos: The driven double pendulum. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[14]  Gauthier,et al.  Stabilizing unstable periodic orbits in a fast diode resonator using continuous time-delay autosynchronization. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[15]  Alberto Tesi,et al.  Control techniques for chaotic dynamical systems , 1992, Kybernetika.

[16]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[17]  Gary William Flake,et al.  Exploiting Chaos to Control the Future , 1993, NIPS.

[18]  Alberto Tesi,et al.  Stabilizing periodic orbits of forced systems via generalized Pyragas controllers , 1997 .

[19]  Christini,et al.  Using noise and chaos control to control nonchaotic systems. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[20]  Valery Petrov,et al.  A map‐based algorithm for controlling low‐dimensional chaos , 1992 .

[21]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[22]  Mannella,et al.  Fast and precise algorithm for computer simulation of stochastic differential equations. , 1989, Physical review. A, General physics.

[23]  W. Ditto,et al.  Controlling chaos in the brain , 1994, Nature.

[24]  Kestutis Pyragas,et al.  Delayed feedback control of chaos by self-adapted delay time , 1995 .

[25]  Glorieux,et al.  Controlling unstable periodic orbits by a delayed continuous feedback. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[26]  Gang Hu,et al.  FEEDBACK CONTROL OF CHAOS IN SPATIOTEMPORAL SYSTEMS , 1995 .

[27]  Kestutis Pyragas Control of chaos via extended delay feedback , 1995 .

[28]  Christini,et al.  Using chaos control and tracking to suppress a pathological nonchaotic rhythm in a cardiac model. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[29]  Roy,et al.  Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. , 1992, Physical review letters.

[30]  K. Showalter,et al.  Controlling chemical chaos , 1991 .

[31]  L. Glass,et al.  DYNAMIC CONTROL OF CARDIAC ALTERNANS , 1997 .

[32]  Schouten,et al.  Experimental control of a chaotic pendulum with unknown dynamics using delay coordinates. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[33]  Edward Ott,et al.  Controlling chaos , 2006, Scholarpedia.

[34]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[35]  Richard J. Field,et al.  A three-variable model of deterministic chaos in the Belousov–Zhabotinsky reaction , 1992, Nature.