Reliable estimation of incoherent motion parametric maps from diffusion-weighted MRI using fusion bootstrap moves

Diffusion-weighted MRI has the potential to provide important new insights into physiological and microstructural properties of the body. The Intra-Voxel Incoherent Motion (IVIM) model relates the observed DW-MRI signal decay to parameters that reflect blood flow in the capillaries (D*), capillaries volume fraction (f), and diffusivity (D). However, the commonly used, independent voxel-wise fitting of the IVIM model leads to imprecise parameter estimates, which has hampered their practical usage. In this work, we improve the precision of estimates by introducing a spatially-constrained Incoherent Motion (IM) model of DW-MRI signal decay. We also introduce an efficient iterative "fusion bootstrap moves" (FBM) solver that enables precise parameter estimates with this new IM model. This solver updates parameter estimates by applying a binary graph-cut solver to fuse the current estimate of parameter values with a new proposal of the parameter values into a new estimate of parameter values that better fits the observed DW-MRI data. The proposals of parameter values are sampled from the independent voxel-wise distributions of the parameter values with a model-based bootstrap resampling of the residuals. We assessed both the improvement in the precision of the incoherent motion parameter estimates and the characterization of heterogeneous tumor environments by analyzing simulated and in vivo abdominal DW-MRI data of 30 patients, and in vivo DW-MRI data of three patients with musculoskeletal lesions. We found our IM-FBM reduces the relative root mean square error of the D* parameter estimates by 80%, and of the f and D parameter estimates by 50% compared to the IVIM model with the simulated data. Similarly, we observed that our IM-FBM method significantly reduces the coefficient of variation of parameter estimates of the D* parameter by 43%, the f parameter by 37%, and the D parameter by 17% compared to the IVIM model (paired Student's t-test, p<0.0001). In addition, we found our IM-FBM method improved the characterization of heterogeneous musculoskeletal lesions by means of increased contrast-to-noise ratio of 19.3%. The IM model and FBM solver combined, provide more precise estimate of the physiological model parameter values that describing the DW-MRI signal decay and a better mechanism for characterizing heterogeneous lesions than does the independent voxel-wise IVIM model.

[1]  Donald Geman,et al.  Stochastic relaxation, Gibbs distributions, and the Bayesian restoration of images , 1984 .

[2]  Simon K. Warfield,et al.  Quantitative Body DW-MRI Biomarkers Uncertainty Estimation Using Unscented Wild-Bootstrap , 2011, MICCAI.

[3]  G. Larry Bretthorst,et al.  On the use of bayesian probability theory for analysis of exponential decay date: An example taken from intravoxel incoherent motion experiments , 1993, Magnetic resonance in medicine.

[4]  R V Mulkern,et al.  Biexponential apparent diffusion coefficient parametrization in adult vs newborn brain. , 2001, Magnetic resonance imaging.

[5]  D. Collins,et al.  Intravoxel incoherent motion in body diffusion-weighted MRI: reality and challenges. , 2011, AJR. American journal of roentgenology.

[6]  I. Yamada,et al.  Diffusion coefficients in abdominal organs and hepatic lesions: evaluation with intravoxel incoherent motion echo-planar MR imaging. , 1999, Radiology.

[7]  Emmanuel Flachaire,et al.  The wild bootstrap, tamed at last , 2001 .

[8]  Simon K. Warfield,et al.  Reliable Assessment of Perfusivity and Diffusivity from Diffusion Imaging of the Body , 2012, MICCAI.

[9]  L. Hedges Distribution Theory for Glass's Estimator of Effect size and Related Estimators , 1981 .

[10]  D. Le Bihan,et al.  Separation of diffusion and perfusion in intravoxel incoherent motion MR imaging. , 1988, Radiology.

[11]  Andrew Blake,et al.  Fusion Moves for Markov Random Field Optimization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[12]  Jeannette M. Perez-Rossello,et al.  Characterization of fast and slow diffusion from diffusion‐weighted MRI of pediatric Crohn's disease , 2013, Journal of magnetic resonance imaging : JMRI.

[13]  S. Schoenberg,et al.  Influence of multichannel combination, parallel imaging and other reconstruction techniques on MRI noise characteristics. , 2008, Magnetic resonance imaging.

[14]  Guang-Zhong Yang,et al.  Bayesian Methods for Pharmacokinetic Models in Dynamic Contrast-Enhanced Magnetic Resonance Imaging , 2006, IEEE Transactions on Medical Imaging.

[15]  Denis Le Bihan,et al.  Intravoxel incoherent motion perfusion MR imaging: a wake-up call. , 2008 .

[16]  Jean-Francois Mangin,et al.  Parallel MRI Noise Correction: An Extension of the LMMSE to Non Central χ Distributions , 2011, MICCAI.

[17]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[18]  A. Luciani,et al.  Liver Cirrhosis : Intravoxel Incoherent Motion MR Imaging — Pilot Study 1 , 2008 .

[19]  E. Akbudak,et al.  Encoding of anisotropic diffusion with tetrahedral gradients: A general mathematical diffusion formalism and experimental results , 1996, Magnetic resonance in medicine.

[20]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[21]  Qun Chen,et al.  Optimization of b‐value sampling for diffusion‐weighted imaging of the kidney , 2012, Magnetic resonance in medicine.

[22]  William M. Wells,et al.  Medical Image Computing and Computer-Assisted Intervention — MICCAI’98 , 1998, Lecture Notes in Computer Science.

[23]  Bram Stieltjes,et al.  Enhancing pancreatic adenocarcinoma delineation in diffusion derived intravoxel incoherent motion f‐maps through automatic vessel and duct segmentation , 2011, Magnetic resonance in medicine.

[24]  Cruz Gloria,et al.  Differentiation of diffusion coefficients to distinguish malignant and benign tumor. , 2010, Journal of X-ray science and technology.

[25]  M. Powell The BOBYQA algorithm for bound constrained optimization without derivatives , 2009 .

[26]  Bram Stieltjes,et al.  Intravoxel Incoherent Motion MRI for the Differentiation Between Mass Forming Chronic Pancreatitis and Pancreatic Carcinoma , 2011, Investigative radiology.

[27]  J. E. Tanner,et al.  Spin diffusion measurements : spin echoes in the presence of a time-dependent field gradient , 1965 .

[28]  Bram Stieltjes,et al.  Toward an optimal distribution of b values for intravoxel incoherent motion imaging. , 2011, Magnetic resonance imaging.

[29]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[30]  Denis Le Bihan,et al.  Intravoxel incoherent motion perfusion MR imaging: a wake-up call. , 2008, Radiology.

[31]  Hersh Chandarana,et al.  Comparison of Biexponential and Monoexponential Model of Diffusion Weighted Imaging in Evaluation of Renal Lesions: Preliminary Experience , 2010, Investigative radiology.

[32]  J. Besag On the Statistical Analysis of Dirty Pictures , 1986 .

[33]  Bjoern H. Menze,et al.  Estimating Kinetic Parameter Maps From Dynamic Contrast-Enhanced MRI Using Spatial Prior Knowledge , 2009, IEEE Transactions on Medical Imaging.

[34]  Peter Boesiger,et al.  Using spatial prior knowledge in the spectral fitting of MRS images , 2012, NMR in biomedicine.

[35]  Bram Stieltjes,et al.  Differentiation of Pancreas Carcinoma From Healthy Pancreatic Tissue Using Multiple b-Values: Comparison of Apparent Diffusion Coefficient and Intravoxel Incoherent Motion Derived Parameters , 2009, Investigative radiology.

[36]  H. Rusinek,et al.  Diagnosis of cirrhosis with intravoxel incoherent motion diffusion MRI and dynamic contrast‐enhanced MRI alone and in combination: Preliminary experience , 2010, Journal of magnetic resonance imaging : JMRI.

[37]  D. Sodickson,et al.  Intravoxel incoherent motion imaging of tumor microenvironment in locally advanced breast cancer , 2011, Magnetic resonance in medicine.