Reduction Fe3+ of Impurities in LiFePO4 from Pyrolysis of Organic Precursor Used for Carbon Deposition

The structural properties of microcrystalline LiFePO4 prepared with and without carbon coating are analyzed with X-ray diffraction spectroscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, and magnetic measurements for comparison. While nanosized ferromagnetic particles (-Fe2O3 clusters) are evidenced from magnetic measurements in samples without carbon coating, such ferromagnetic clusters just do not exist in the carbon-coated sample. Ferromagnetic resonance experiments are a probe of the -Fe2O3 nanoparticles, and magnetization measurements as well, allowing for a quantitative estimate of the amount of Fe3+. While the fraction of iron in the Fe3+ configuration rises to 0.18% (in the form of -Fe2O3 nanoparticles) in the carbon-free sample, this fraction falls to a residual impurity concentration in the carbon-coated sample. Structural properties show that the carbon does not penetrate inside the LiFePO4 particles but has been very efficient in the reduction of Fe3+, preventing the -Fe2O3 clustering thus pointing out a gas phase reduction process. The carbon deposit characterized by Raman spectroscopy is an amorphous graphite deposit hydrogenated with a very small H/C ratio, with the same Raman characteristics as a-C carbon films obtained by pyrolysis technique at pyrolysis temperature 830±30°C. The impact of the carbon coating on the electrochemical properties is also reported.

[1]  S. Solin,et al.  “Diamond-like” 3-fold coordinated amorphous carbon , 1980 .

[2]  P. Koidl,et al.  Raman scattering from extremely thin hard amorphous carbon films , 1987 .

[3]  Robertson,et al.  Electronic and atomic structure of amorphous carbon. , 1987, Physical review. B, Condensed matter.

[4]  William B. White,et al.  Characterization of diamond films by Raman spectroscopy , 1989 .

[5]  Robert Kostecki,et al.  Surface studies of carbon films from pyrolyzed photoresist , 2001 .

[6]  Linda F. Nazar,et al.  Approaching Theoretical Capacity of LiFePO4 at Room Temperature at High Rates , 2001 .

[7]  Manuel Cardona,et al.  Light Scattering in Solids VII , 1982 .

[8]  L. Nazar,et al.  Nano-network electronic conduction in iron and nickel olivine phosphates , 2004, Nature materials.

[9]  A. Marchand,et al.  Caracterisation de materiaux carbones par microspectrometrie Raman , 1984 .

[10]  Alain Mauger,et al.  Nano-sized impurity phases in relation to the mode of preparation of LiFePO4 , 2006 .

[11]  Comparison of LiFePO4 from different sources , 2005 .

[12]  M. Dresselhaus,et al.  Raman spectra of polyparaphenylene‐based carbon prepared at low heat‐treatment temperatures , 1996 .

[13]  K. Zaghib,et al.  Extraction of Layerwise Conductivities in Carbon-Enhanced, Multilayered LiFePO4 Cathodes , 2005 .

[14]  M. Ramsteiner,et al.  Resonant Raman scattering of hydrogenated amorphous carbon: Evidence for π‐bonded carbon clusters , 1987 .

[15]  M. Nakamizo,et al.  Raman spectra of the oxidized and polished surfaces of carbon , 1984 .

[16]  John Robertson,et al.  Properties of diamond-like carbon , 1992 .

[17]  R. E. Newnham,et al.  Antiferromagnetism in LiFePO4 , 1967 .

[18]  Sai-Cheong Chung,et al.  Optimized LiFePO4 for Lithium Battery Cathodes , 2001 .

[19]  J. Dahn,et al.  Reducing Carbon in LiFePO4 / C Composite Electrodes to Maximize Specific Energy, Volumetric Energy, and Tap Density , 2002 .

[20]  Robert Kostecki,et al.  Electrochemical performance of Sol-Gel synthesized LiFePO{sub 4} in lithium batteries , 2004 .

[21]  Robert Dominko,et al.  Influence of carbon black distribution on performance of oxide cathodes for Li ion batteries , 2003 .

[22]  M. A. Tamor,et al.  Correlation of the optical gaps and Raman spectra of hydrogenated amorphous carbon films , 1989 .

[23]  Nathalie Ravet,et al.  Electroactivity of natural and synthetic triphylite , 2001 .

[24]  Robert Kostecki,et al.  Effect of surface carbon structure on the electrochemical performance of LiFePO{sub 4} , 2003 .

[25]  M. Dresselhaus,et al.  Light scattering in graphite intercalation compounds , 1982 .

[26]  M.Th. Paques-Ledent,et al.  Vibrational studies of olivine-type compounds—II Orthophosphates, -arsenates and -vanadates AIBIIXVO4 , 1974 .

[27]  Konstantin Konstantinov,et al.  Conductivity improvements to spray-produced LiFePO4 by addition of a carbon source , 2004 .

[28]  M. Tamor,et al.  Raman ``fingerprinting'' of amorphous carbon films , 1994 .

[29]  A. Ishitani,et al.  Resonant Raman scattering of diamondlike amorphous carbon films , 1988 .

[30]  R. Frech,et al.  Raman and FTIR Spectroscopic Study of Li x FePO4 ( 0 ⩽ x ⩽ 1 ) , 2004 .

[31]  K. S. Nanjundaswamy,et al.  Phospho‐olivines as Positive‐Electrode Materials for Rechargeable Lithium Batteries , 1997 .