Recency, range expansion, and unsorted lineages: implications for interpreting neutral genetic variation in the sharp‐tailed grouse (Tympanuchus phasianellus)

Both current and historical patterns of variation are relevant to understanding and managing ecological diversity. Recently derived species present a challenge to the reconstruction of historical patterns because neutral molecular data for these taxa are more likely to exhibit effects of recent and ongoing demographic processes. We studied geographical patterns of neutral molecular variation in a species thought to be of relatively recent origin, Tympanuchus phasianellus (sharp‐tailed grouse), using mitochondrial control region sequences (CR‐I), amplified fragment length polymorphisms (AFLP), and microsatellites. For historical context, we also analysed CR‐I in all species of Tympanuchus. Within T. phasianellus, we found evidence for restricted gene flow between eastern and western portions of the species range, generally corresponding with the range boundary of T. p. columbianus and T. p. jamesi. The mismatch distribution and molecular clock estimates from the CR‐I data suggested that all Tympanuchus underwent a range expansion prior to sorting of mitotypes among the species, and that sorting may have been delayed as a result of mutation‐drift disequilibrium. This study illustrates the challenge of using genetic data to detect historical divergence in groups that are of relatively recent origin, or that have a history dominated by nonequilibrium conditions. We suggest that in such cases, morphological, ecological, and behavioural data may be particularly important adjuncts to molecular data for the recognition of historically or adaptively divergent groups.

[1]  K. Crandall,et al.  Considering evolutionary processes in conservation biology. , 2000, Trends in ecology & evolution.

[2]  G. Amato,et al.  Genetic evaluation of a proposed introduction: the case of the greater prairie chicken and the extinct heath hen , 2004, Molecular ecology.

[3]  T. Webb,,et al.  Holocene Changes In the Vegetation of the Midwest , 1983 .

[4]  D. Swofford PAUP*: Phylogenetic analysis using parsimony (*and other methods), Version 4.0b10 , 2002 .

[5]  R. Hoffmann,et al.  Influence of Late-Glacial and Post-Glacial Events on the Distribution of Recent Mammals on the Northern Great Plains , 1970 .

[6]  H. Harpending,et al.  Population growth makes waves in the distribution of pairwise genetic differences. , 1992, Molecular biology and evolution.

[7]  J. Felsenstein Phylogenies and the Comparative Method , 1985, The American Naturalist.

[8]  Yoshio Tateno,et al.  Accuracy of estimated phylogenetic trees from molecular data , 1983, Journal of Molecular Evolution.

[9]  HighWire Press Philosophical Transactions of the Royal Society of London , 1781, The London Medical Journal.

[10]  Craig Moritz,et al.  Strategies to protect biological diversity and the evolutionary processes that sustain it. , 2002, Systematic biology.

[11]  Sudhir Kumar,et al.  MEGA2: molecular evolutionary genetics analysis software , 2001, Bioinform..

[12]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. , 2003, Genetics.

[13]  C. D. Ankney,et al.  MITOCHONDRIAL GENE TREES AND THE EVOLUTIONARY RELATIONSHIP OF MALLARD AND BLACK DUCKS , 1990, Evolution; international journal of organic evolution.

[14]  K. Turksen,et al.  Isolation and characterization , 2006 .

[15]  M. Nei,et al.  Mathematical model for studying genetic variation in terms of restriction endonucleases. , 1979, Proceedings of the National Academy of Sciences of the United States of America.

[16]  M. Stoneking,et al.  Mitochondrial DNA and two perspectives on evolutionary genetics , 1985 .

[17]  C. Braun,et al.  FIRST SPECIMEN RECORDS FOR RUFFED GROUSE IN COLORADO , 2003 .

[18]  S. Drovetski Molecular phylogeny of grouse: individual and combined performance of W-linked, autosomal, and mitochondrial loci. , 2002, Systematic biology.

[19]  M. Bellinger,et al.  Loss of Genetic Variation in Greater Prairie Chickens Following a Population Bottleneck in Wisconsin, U.S.A. , 2003 .

[20]  R. Zink CHAPTER 11 – Phylogeographic Studies of North American Birds , 1997 .

[21]  J. Aldrich Geographic Orientation of American Tetraonidae , 1963 .

[22]  C. Moritz Defining 'Evolutionarily Significant Units' for conservation. , 1994, Trends in ecology & evolution.

[23]  Kristine D. Johnson,et al.  Genetic structure among closely spaced leks in a peripheral population of lesser prairie‐chickens , 2004, Molecular ecology.

[24]  R. Müllenbach,et al.  An efficient salt-chloroform extraction of DNA from blood and tissues. , 1989, Trends in genetics : TIG.

[25]  W. Hoeh,et al.  Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah , 2004, Molecular ecology.

[26]  C. W. Kilpatrick,et al.  Phylogeography and molecular systematics of the Peromyscus aztecus species group (Rodentia: Muridae) inferred using parsimony and likelihood. , 1997, Systematic biology.

[27]  R. J. Gutiérrez,et al.  Phylogeographic structure, gene flow and species status in blue grouse (Dendragapus obscurus) , 2004, Molecular ecology.

[28]  P. Trontelj,et al.  Characterization of microsatellites in capercaillie Tetrao urogallus (AVES) , 2000, Molecular ecology.

[29]  F. Hamerstrom Mobility of the Sharp-Tailed Grouse in Relation to its Ecology and Distribution , 1951 .

[30]  M. Servedio,et al.  Phylogenetic analysis and intraspecific variation: performance of parsimony, likelihood, and distance methods. , 1998, Systematic biology.

[31]  V. Lucchini,et al.  Organization and Evolution of the Mitochondrial DNA Control Region in the Avian Genus Alectoris , 1998, Journal of Molecular Evolution.

[32]  J. Dickinson,et al.  Check-List of North American Birds , 1958 .

[33]  H. Kishino,et al.  Dating of the human-ape splitting by a molecular clock of mitochondrial DNA , 2005, Journal of Molecular Evolution.

[34]  M. Lynch,et al.  Analysis of population genetic structure with RAPD markers , 1994, Molecular ecology.

[35]  P. Racey,et al.  MATRILINEAL GENETIC STRUCTURE AND FEMALE‐MEDIATED GENE FLOW IN RED GROUSE (LAGOPUS LAGOPUS SCOTICUS): AN ANALYSIS USING MITOCHONDRIAL DNA , 2000, Evolution; international journal of organic evolution.

[36]  A. Rogers GENETIC EVIDENCE FOR A PLEISTOCENE POPULATION EXPLOSION , 1995, Evolution; international journal of organic evolution.

[37]  M. Bellinger,et al.  Temporal changes in allele frequencies and low effective population size in greater prairie‐chickens , 2004, Molecular ecology.

[38]  R. Zink The role of subspecies in obscuring avian biological diversity and misleading conservation policy , 2004, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[39]  R. W. Dickerman,et al.  AN EXTINCT SUBSPECIES OF SHARP-TAILED GROUSE FROM NEW MEXICO , 1994 .

[40]  Michael P. Cummings,et al.  MEGA (Molecular Evolutionary Genetics Analysis) , 2004 .

[41]  M. Lynch,et al.  THE QUANTITATIVE AND MOLECULAR GENETIC ARCHITECTURE OF A SUBDIVIDED SPECIES , 1999, Evolution; international journal of organic evolution.

[42]  Yoshio Tateno,et al.  Accuracy of estimated phylogenetic trees from molecular data , 2005, Journal of Molecular Evolution.

[43]  D. Ellsworth,et al.  Mitochondrial-DNA and nuclear-gene differentiation in North American prairie grouse (Genus Tympanuchus) , 1994 .

[44]  J. Avise,et al.  Pleistocene phylogeographic effects on avian populations and the speciation process , 1998, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[45]  M. P. Cummings,et al.  PAUP* Phylogenetic analysis using parsimony (*and other methods) Version 4 , 2000 .

[46]  M. M. Kamshilov [Organization and evolution]. , 1970, Zhurnal obshchei biologii.

[47]  M. Stephens,et al.  Inference of population structure using multilocus genotype data: dominant markers and null alleles , 2007, Molecular ecology notes.

[48]  A. Templeton,et al.  Separating population structure from population history: a cladistic analysis of the geographical distribution of mitochondrial DNA haplotypes in the tiger salamander, Ambystoma tigrinum. , 1995, Genetics.

[49]  G. Hewitt Genetic consequences of climatic oscillations in the Quaternary. , 2004, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[50]  François Rousset,et al.  GENEPOP (version 1.2): population genetic software for exact tests and ecumenicism , 1995 .

[51]  F. Hamerstrom,et al.  Distribution of American gallinaceous game birds , 1956 .

[52]  Mark Kot,et al.  Adaptation: Statistics and a Null Model for Estimating Phylogenetic Effects , 1990 .

[53]  A. Templeton,et al.  Root probabilities for intraspecific gene trees under neutral coalescent theory. , 1994, Molecular phylogenetics and evolution.

[54]  John P. Huelsenbeck,et al.  MrBayes 3: Bayesian phylogenetic inference under mixed models , 2003, Bioinform..

[55]  L. Excoffier,et al.  Analysis of molecular variance inferred from metric distances among DNA haplotypes: application to human mitochondrial DNA restriction data. , 1992, Genetics.

[56]  F. Tajima Evolutionary relationship of DNA sequences in finite populations. , 1983, Genetics.

[57]  J. Höglund,et al.  Historical biogeography and a mitochondrial DNA phylogeny of grouse and ptarmigan. , 2001, Molecular phylogenetics and evolution.

[58]  Alan R Templeton,et al.  Statistical phylogeography: methods of evaluating and minimizing inference errors , 2004, Molecular ecology.

[59]  A. Poole,et al.  Sharp-tailed Grouse (Tympanuchus phasianellus) , 1998 .

[60]  T. W. Quinn The genetic legacy of Mother Goose– phylogeographic patterns of lesser snow goose Chen caerulescens caerulescens maternal lineages , 1992, Molecular ecology.

[61]  E. Martins The Comparative Method in Evolutionary Biology, Paul H. Harvey, Mark D. Pagel. Oxford University Press, Oxford (1991), vii, + 239 Price $24.95 paperback , 1992 .

[62]  M. Blouin,et al.  Genetic structure in a montane ranid frog: restricted gene flow and nuclear–mitochondrial discordance , 2003, Molecular ecology.

[63]  P. Donnelly,et al.  Inference of population structure using multilocus genotype data. , 2000, Genetics.

[64]  D. Mindell Avian molecular evolution and systematics , 1997 .

[65]  A. Baker,et al.  CHAPTER 3 – Mitochondrial Control Region Sequences as Tools for Understanding Evolution , 1997 .

[66]  A. Wilson,et al.  Sequence evolution in and around the mitochondrial control region in birds , 1993, Journal of Molecular Evolution.

[67]  P. Keim,et al.  Genetic variation across the historical range of the wild turkey (Meleagris gallopavo) , 2002, Molecular ecology.

[68]  C. Aldridge,et al.  OCCURRENCE OF GREATER SAGE-GROUSE × SHARP-TAILED GROUSE HYBRIDS IN ALBERTA , 2001 .

[69]  A. Loiseau,et al.  Isolation and characterization of microsatellite loci in black grouse (Tetrao tetrix) , 2001 .

[70]  J. H. Wright,et al.  Late-Quaternary Environments of the United States , 1983 .

[71]  P. Johnsgard,et al.  Distributional Changes and Interaction between Prairie Chickens and Sharp-Tailed Grouse in the Midwest , 1968 .

[72]  K. Burnham,et al.  A population genetic comparison of large‐ and small‐bodied sage grouse in Colorado using microsatellite and mitochondrial DNA markers , 1999, Molecular ecology.

[73]  P. Dunn,et al.  Contrasting patterns of mitochondrial and microsatellite population structure in fragmented populations of greater prairie‐chickens , 2003, Molecular ecology.

[74]  P. Vos,et al.  AFLP: a new technique for DNA fingerprinting. , 1995, Nucleic acids research.

[75]  S. Piertney,et al.  Isolation and characterization of hypervariable microsatellites in the red grouse Lagopus lagopus scoticus , 1997, Molecular ecology.

[76]  P. Johnsgard Grassland Grouse and Their Conservation , 2002 .

[77]  J. Sambrook,et al.  Molecular Cloning: A Laboratory Manual , 2001 .

[78]  L. L. Snyder A study of the sharp-tailed grouse , 1935 .

[79]  S. Åkesson,et al.  Conflicting patterns of mitochondrial and nuclear DNA diversity in Phylloscopus warblers , 2005, Molecular ecology.

[80]  Justin Hicks,et al.  PATTERNS OF GENETIC ARCHITECTURE FOR LIFE‐HISTORY TRAITS AND MOLECULAR MARKERS IN A SUBDIVIDED SPECIES , 2001, Evolution; international journal of organic evolution.

[81]  D. Sparling Quantitative Analysis of Prairie Grouse Vocalizations , 1983 .

[82]  K. Crandall,et al.  TCS: a computer program to estimate gene genealogies , 2000, Molecular ecology.

[83]  U. Fish Endangered and threatened wildlife and plants , 1987 .

[84]  J. McKay,et al.  Adaptive population divergence: markers, QTL and traits , 2002 .

[85]  S. Drovetski Plio‐Pleistocene climatic oscilations, Holarctic biogeography and speciation in an avian subfamily , 2003 .

[86]  Anthony D. Apa,et al.  DISTRIBUTION OF SAGE-GROUSE IN NORTH AMERICA , 2004 .

[87]  S. Edwards,et al.  RECONCILING ACTUAL AND INFERRED POPULATION HISTORIES IN THE HOUSE FINCH (CARPODACUS MEXICANUS) BY AFLP ANALYSIS , 2003, Evolution; international journal of organic evolution.

[88]  Eben H. Paxton,et al.  GENETIC VARIATION IN THE ENDANGERED SOUTHWESTERN WILLOW FLYCATCHER , 2000 .