Space Objects Classification and Characterization via Deep Learning and Light Curves: Applications to Space Traffic Management

[1]  Chris Sabol,et al.  Photometric Attitude Estimation for Agile Space Objects with Shape Uncertainty , 2014 .

[2]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[3]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[4]  Yoshua Bengio,et al.  How transferable are features in deep neural networks? , 2014, NIPS.

[5]  M. Shuster A survey of attitude representation , 1993 .

[6]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[7]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[8]  Peter Shirley,et al.  An Anisotropic Phong Light Reflection Model , 2000 .

[9]  John L. Crassidis,et al.  Space object area-to-mass ratio estimation using multiple model approaches , 2012 .

[10]  John L. Crassidis,et al.  Space Object Shape Characterization and Tracking Using Light Curve and Angles Data , 2014 .

[11]  David Gaylor Use of Hierarchical Mixtures of Experts to Detect Resident Space Object Attitude , 2014 .

[12]  Brendt Wohlberg,et al.  Photometric Data from Non-Resolved Objects for Space Object Characterization and Improved Atmospheric Modeling , 2013 .

[13]  Paul W. Kervin,et al.  Time-Resolved I-Band Photometry of Calibration Spheres and NaK Droplets , 2007 .

[14]  Joanna C. Hinks,et al.  Attitude observability from light curve measurements , 2013 .

[15]  Moriba K. Jah,et al.  Satellite Characterization: Angles and Light Curve Data Fusion for Spacecraft State and Parameter Estimation , 2007 .

[16]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[17]  Paul J. Cefola,et al.  Refining Space Object Radiation Pressure Modeling with Bidirectional Reflectance Distribution Functions , 2014 .

[18]  John L. Crassidis,et al.  RESIDENT SPACE OBJECT SHAPE INVERSION VIA ADAPTIVE HAMILTONIAN MARKOV CHAIN MONTE CARLO , 2016 .

[19]  Fei-Fei Li,et al.  Large-Scale Video Classification with Convolutional Neural Networks , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[20]  Martín Abadi,et al.  TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems , 2016, ArXiv.

[21]  M. Kaasalainen,et al.  Optimization Methods for Asteroid Lightcurve Inversion: I. Shape Determination , 2001 .

[22]  Bolei Zhou,et al.  Learning Deep Features for Scene Recognition using Places Database , 2014, NIPS.

[23]  D. Hall,et al.  Separating Attitude and Shape Effects for Non-resolved Objects , 2007 .

[24]  Andreas Christmann,et al.  Support vector machines , 2008, Data Mining and Knowledge Discovery Handbook.

[25]  John L. Crassidis,et al.  Inactive space object shape estimation via astrometric and photometric data fusion , 2012 .

[26]  Frederick A. Leve,et al.  Astrometric and photometric data fusion for inactive space object feature estimation , 2011 .

[27]  Ian T. Jolliffe,et al.  Principal Component Analysis , 2002, International Encyclopedia of Statistical Science.

[28]  Honglak Lee,et al.  Unsupervised feature learning for audio classification using convolutional deep belief networks , 2009, NIPS.

[29]  Thomas G. Dietterich Multiple Classifier Systems , 2000, Lecture Notes in Computer Science.