The occurrence of binary evolution pulsators in classical instability strip of RR Lyrae and Cepheid variables

Single star evolution does not allow extremely low-mass stars to cross the classical instability strip (IS) during the Hubble time. However, within binary evolution framework low-mass stars can appear inside the IS once the mass transfer (MT) is taken into account. Triggered by a discovery of low-mass 0.26 Msun RR Lyrae-like variable in a binary system, OGLE-BLG-RRLYR-02792, we investigate the occurrence of similar binary components in the IS, which set up a new class of low-mass pulsators. They are referred to as Binary Evolution Pulsators (BEPs) to underline the interaction between components, which is crucial for substantial mass loss prior to the IS entrance. We simulate a population of 500 000 metal-rich binaries and report that 28 143 components of binary systems experience severe MT (loosing up to 90% of mass), followed by at least one IS crossing in luminosity range of RR Lyrae (RRL) or Cepheid variables. A half of these systems enter the IS before the age of 4 Gyr. BEPs display a variety of physical and orbital parameters, with the most important being the BEP mass in range 0.2-0.8 Msun, and the orbital period in range 10-2500 d. Based on the light curve only, BEPs can be misclassified as genuine classical pulsators, and as such they would contaminate genuine RRL and classical Cepheid variables at levels of 0.8% and 5%, respectively. We state that the majority of BEPs will remain undetected and we discuss relevant detection limitations.

[1]  Douglas C. Heggie,et al.  Binary evolution in stellar dynamics , 1975 .

[2]  Robert W. O'Connell,et al.  Far-Ultraviolet Radiation from Elliptical Galaxies , 1999, astro-ph/9906068.

[3]  M. Catelán,et al.  Variable Stars in the Unusual, Metal-rich Globular Cluster NGC 6388 , 2001, astro-ph/0107341.

[4]  RR-Lyrae-type pulsations from a 0.26-solar-mass star in a binary system , 2012, Nature.

[5]  Philipp Podsiadlowski,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 21/08/00 EVOLUTIONARY BINARY SEQUENCES FOR LOW- AND INTERMEDIATE-MASS X-RAY BINARIES , 2001 .

[6]  N. Evans,et al.  The occurrence of classical Cepheids in binary systems , 2014, 1412.3468.

[7]  C. Copperwheat,et al.  Multi-periodic pulsations of a stripped red-giant star in an eclipsing binary system , 2013, Nature.

[8]  P. Gaulme,et al.  SURFACE ACTIVITY AND OSCILLATION AMPLITUDES OF RED GIANTS IN ECLIPSING BINARIES , 2014, 1402.3027.

[9]  Santi Cassisi,et al.  Metal-rich RR Lyrae Variables. I. The Evolutionary Scenario , 1996, astro-ph/9609153.

[10]  K. Kinemuchi,et al.  The occurrence of non-pulsating stars in the γ Dor and δ Sct instability regions , 2013, Proceedings of the International Astronomical Union.

[11]  N. Ivanova,et al.  Mass transfer from giant donors , 2014, 1410.5109.

[12]  W. Gieren,et al.  THE ARAUCARIA PROJECT: ACCURATE DETERMINATION OF THE DYNAMICAL MASS OF THE CLASSICAL CEPHEID IN THE ECLIPSING SYSTEM OGLE-LMC-CEP-1812 , 2011, 1109.5414.

[13]  Christopher A. Tout,et al.  Low- and intermediate-mass close binary evolution and the initial-final mass relation , 2000 .

[14]  J. R. Hurley,et al.  Comprehensive analytic formulae for stellar evolution as a function of mass and metallicity , 2000, astro-ph/0001295.

[15]  P. G. Prada Moroni,et al.  Very low-mass white dwarfs with a C-O core , 2009, 0909.2742.

[16]  H. Abt Normal and abnormal binary frequencies , 1983 .

[17]  Tomasz Bulik,et al.  A Comprehensive Study of Binary Compact Objects as Gravitational Wave Sources: Evolutionary Channels, Rates, and Physical Properties , 2001, astro-ph/0111452.

[18]  R. Mathieu Pre-Main-Sequence Binary Stars , 1994 .

[19]  M. Marconi,et al.  Metal-rich RR Lyrae Variables. II. The Pulsational Scenario , 1997, astro-ph/9702083.

[20]  B. Madore,et al.  Physical parameters and the projection factor of the classical Cepheid in the binary system OGLE-LMC-CEP-0227 , 2013, 1308.5023.

[21]  A. Walker,et al.  The Metallicity of RR Lyrae Stars in Baade's Window , 1991 .

[22]  S. Tremaine,et al.  Submitted to ApJ Preprint typeset using L ATEX style emulateapj v. 10/09/06 SHRINKING BINARY AND PLANETARY ORBITS BY KOZAI CYCLES WITH TIDAL FRICTION , 2022 .

[23]  W. Gieren,et al.  THE ARAUCARIA PROJECT. OGLE-LMC-CEP-1718: AN EXOTIC ECLIPSING BINARY SYSTEM COMPOSED OF TWO CLASSICAL OVERTONE CEPHEIDS IN A 413 DAY ORBIT , 2014, 1403.3617.

[24]  The Origin of Extreme Horizontal Branch Stars , 1995, astro-ph/9511017.

[25]  Warren R. Brown,et al.  A new class of pulsating white dwarf of extremely low mass: The fourth and fifth members , 2013, 1310.0013.

[26]  P. Zasche,et al.  Survey for δ Sct components in eclipsing binaries and new correlations between pulsation frequency and fundamental stellar characteristics , 2012, 1404.2808.

[27]  W. Gieren,et al.  Pulsation models for the 0.26 M⊙ star mimicking RR Lyrae pulsator. Model survey for the new class of variable stars , 2012, 1210.6030.

[28]  Jieun Choi,et al.  MESA ISOCHRONES AND STELLAR TRACKS (MIST). I. SOLAR-SCALED MODELS , 2016, 1604.08592.

[29]  W. Gieren,et al.  THE IMPACT OF CONTAMINATED RR LYRAE/GLOBULAR CLUSTER PHOTOMETRY ON THE DISTANCE SCALE , 2012, 1205.0255.

[30]  A. Gautschy,et al.  On the Theoretical Period-Luminosity Relation of Cepheids , 1998, astro-ph/9801242.

[31]  C. Tout,et al.  Stellar evolution models for Z = 0.0001 to 0.03 (Pols+ 1998) , 1998 .

[32]  T. Bedding,et al.  A search for non-pulsating, chemically normal stars in the δ Scuti instability strip using Kepler data , 2014, 1412.7543.

[33]  S. Degl'Innocenti,et al.  A pulsational approach to near-infrared and visual magnitudes of RR Lyr stars , 2003 .

[34]  M. Catelán,et al.  THE ARAUCARIA PROJECT: THE FIRST-OVERTONE CLASSICAL CEPHEID IN THE ECLIPSING SYSTEM OGLE-LMC-CEP-2532 , 2015, 1504.04611.

[35]  Warren R. Brown,et al.  THE BINARY FRACTION OF LOW-MASS WHITE DWARFS , 2011, 1101.5169.

[36]  P. Eggleton,et al.  A Mechanism for Producing Short-Period Binaries , 2006 .

[37]  P. Eggleton,et al.  Evolution of Close Binary Systems , 2005 .

[38]  R. Christy,et al.  A study of pulsation in RR Lyrae models. , 1966 .

[39]  I. Yamamura,et al.  The extended atmosphere and evolution of the RV Tau star , 2002, astro-ph/0203234.

[40]  Accepted for publication in the Astrophysical Journal A New Look at the Binary Characteristics of Massive Stars , 2007 .

[41]  M. Livio,et al.  COMMON ENVELOPES IN BINARY STAR EVOLUTION , 1993 .

[42]  S. Udry,et al.  Tertiary Companions to Close Spectroscopic Binaries , 2006, astro-ph/0601518.

[43]  G. Raskin,et al.  Post-AGB stars with hot circumstellar dust: binarity of the low-amplitude pulsators , 2009, 0906.4482.

[44]  Dean M. Townsley,et al.  MODULES FOR EXPERIMENTS IN STELLAR ASTROPHYSICS (MESA): BINARIES, PULSATIONS, AND EXPLOSIONS , 2015, 1506.03146.

[45]  Galactic-Field IMFs of Massive Stars , 2003, astro-ph/0308356.

[46]  B. Pilecki,et al.  The dynamical mass of a classical Cepheid variable star in an eclipsing binary system , 2010, Nature.

[47]  S. Cassisi,et al.  RR Lyrae variables in Galactic globular clusters: IV. Synthetic HB and RR Lyrae predictions , 2004 .

[48]  S. Bloemen,et al.  EL CVn-type binaries - Discovery of 17 helium white dwarf precursors in bright eclipsing binary star systems , 2013, 1310.4863.

[49]  P. Kroupa,et al.  Galactic-Field Initial Mass Functions of Massive Stars , 2003 .

[50]  Evolution of binary stars and the effect of tides on binary populations , 2002, astro-ph/0201220.

[51]  Hans Van Winckel,et al.  Post-AGB Stars , 2003 .

[52]  A. Zezas,et al.  Compact Object Modeling with the StarTrack Population Synthesis Code , 2005, astro-ph/0511811.

[53]  G. Bono,et al.  Evolutionary Scenario for Metal-Poor Pulsating Stars.II.Anomalous Cepheids , 1997 .

[54]  Caltech,et al.  New RR Lyrae variables in binary systems , 2015, 1502.01318.

[55]  C. Waelkens,et al.  RU Cen and SX Cen: Two strongly depleted RV Tauri stars in binary systems - The RV Tauri photometric b phenomenon and binarity , 2002 .

[56]  S. D. Mink,et al.  Wind Roche-lobe overflow: Application to carbon-enhanced metal-poor stars , 2013, 1302.4441.

[57]  R. Poleski,et al.  DECIPHERING THE 3D STRUCTURE OF THE OLD GALACTIC BULGE FROM THE OGLE RR LYRAE STARS , 2014, 1412.4121.