Proof of the alternating sign matrix conjecture

The number of $n \times n$ matrices whose entries are either $-1$, $0$, or $1$, whose row- and column- sums are all $1$, and such that in every row and every column the non-zero entries alternate in sign, is proved to be $$[1!4! \dots (3n-2)!] \over [n!(n+1)! \dots (2n-1)!],$$ as conjectured by Mills, Robbins, and Rumsey.

[1]  W. H. Mills,et al.  Proof of the Macdonald conjecture , 1982 .

[2]  Doron Zeilberger,et al.  Partial difference equations in m1>=m2>= ... >=mn>=0 and their applications to combinatorics , 1980, Discret. Math..

[3]  George E. Andrews,et al.  Plane partitions (III): The weak Macdonald conjecture , 1979 .

[4]  Howard Rumsey,et al.  Determinants and alternating sign matrices , 1986 .

[5]  David P. Robbins,et al.  Alternating Sign Matrices and Descending Plane Partitions , 1983, J. Comb. Theory, Ser. A.

[6]  David P. Robbins,et al.  Self-complementary totally symmetric plane partitions , 1986, J. Comb. Theory, Ser. A.

[7]  Dennis Stanton,et al.  Sign variations of the Macdonald identities , 1986 .

[8]  Doron Zeilberger,et al.  A Constant Term Identity Featuring the Ubiquitous (and Mysterious) Andrews-Mills-Robbins-Rumsey Numbers 1, 2, 7, 42, 429, , 1994, J. Comb. Theory, Ser. A.

[9]  Doron Zeilberger,et al.  The Algebra of Linear Partial Difference Operators and Its Applications , 1980 .

[10]  R. J. Duffin,et al.  Basic properties of discrete analytic functions , 1956 .

[11]  Richard P. Stanley,et al.  A Baker's dozen of conjectures concerning plane partitions , 1986 .

[12]  Doron Zeilberger,et al.  Rational functions certify combinatorial identities , 1990 .

[13]  Õ Òò Ü ´ Ü ½ Ü Ò,et al.  A STEMBRIDGE-STANTON STYLE PROOF OF THE HABSIEGER-KADELL q-MORRIS IDENTITY by Doron ZEILBERGER , .

[14]  John R. Stembridge A short proof of macdonald's conjecture for the root systems of type a , 1988 .

[15]  Doron Zeilberger,et al.  A Unified Approach to Macdonald’s Root-System Conjectures , 1988 .

[16]  Donald St. P. Richards,et al.  Hypergeometric functions on complex matrix space , 1991 .

[17]  I. G. MacDonald,et al.  Symmetric functions and Hall polynomials , 1979 .

[18]  Doron Zeilberger,et al.  An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .

[19]  B. M. Fulk MATH , 1992 .