Proof of the alternating sign matrix conjecture
暂无分享,去创建一个
[1] W. H. Mills,et al. Proof of the Macdonald conjecture , 1982 .
[2] Doron Zeilberger,et al. Partial difference equations in m1>=m2>= ... >=mn>=0 and their applications to combinatorics , 1980, Discret. Math..
[3] George E. Andrews,et al. Plane partitions (III): The weak Macdonald conjecture , 1979 .
[4] Howard Rumsey,et al. Determinants and alternating sign matrices , 1986 .
[5] David P. Robbins,et al. Alternating Sign Matrices and Descending Plane Partitions , 1983, J. Comb. Theory, Ser. A.
[6] David P. Robbins,et al. Self-complementary totally symmetric plane partitions , 1986, J. Comb. Theory, Ser. A.
[7] Dennis Stanton,et al. Sign variations of the Macdonald identities , 1986 .
[8] Doron Zeilberger,et al. A Constant Term Identity Featuring the Ubiquitous (and Mysterious) Andrews-Mills-Robbins-Rumsey Numbers 1, 2, 7, 42, 429, , 1994, J. Comb. Theory, Ser. A.
[9] Doron Zeilberger,et al. The Algebra of Linear Partial Difference Operators and Its Applications , 1980 .
[10] R. J. Duffin,et al. Basic properties of discrete analytic functions , 1956 .
[11] Richard P. Stanley,et al. A Baker's dozen of conjectures concerning plane partitions , 1986 .
[12] Doron Zeilberger,et al. Rational functions certify combinatorial identities , 1990 .
[13] Õ Òò Ü ´ Ü ½ Ü Ò,et al. A STEMBRIDGE-STANTON STYLE PROOF OF THE HABSIEGER-KADELL q-MORRIS IDENTITY by Doron ZEILBERGER , .
[14] John R. Stembridge. A short proof of macdonald's conjecture for the root systems of type a , 1988 .
[15] Doron Zeilberger,et al. A Unified Approach to Macdonald’s Root-System Conjectures , 1988 .
[16] Donald St. P. Richards,et al. Hypergeometric functions on complex matrix space , 1991 .
[17] I. G. MacDonald,et al. Symmetric functions and Hall polynomials , 1979 .
[18] Doron Zeilberger,et al. An algorithmic proof theory for hypergeometric (ordinary and “q”) multisum/integral identities , 1992 .
[19] B. M. Fulk. MATH , 1992 .