Efficient Markovian couplings: examples and counterexamples

In this paper we study the notion of an efficient coupling of Markov processes. Informally, an efficient coupling is one which couples at the maximum possible exponential rate, as given by the spectral gap. This notion is of interest not only for its own sake, but also of growing importance arising from the recent advent of methods of “perfect simulation”: it helps to establish the “price of perfection” for such methods. In general, one can always achieve efficient coupling if the coupling is allowed to “cheat”(if each component’s behavior is affected by the future behavior of the other component), but the situation is more interesting if the coupling is required to be co-adapted. We present an informal heuristic for the existence of an efficient coupling, and justify the heuristic by proving rigorous results and examples in the contexts of finite reversible Markov chains and of reflecting Brownian motion in planar domains.

[1]  W. Fleming,et al.  Theory of Markov Processes , 1963 .

[2]  N. U. Prabhu Review: D. R. Cox, H. D. Miller, The Theory of Stochastic Processes , 1966 .

[3]  David R. Cox,et al.  The Theory of Stochastic Processes , 1967, The Mathematical Gazette.

[4]  S. Taylor DIFFUSION PROCESSES AND THEIR SAMPLE PATHS , 1967 .

[5]  D. Griffeath A maximal coupling for Markov chains , 1975 .

[6]  G. Folland Introduction to Partial Differential Equations , 1976 .

[7]  Mark A. Pinsky,et al.  The Eigenvalues of an Equilateral Triangle , 1980 .

[8]  Ruth J. Williams Brownian motion in a wedge with oblique reflection at the boundary , 1985 .

[9]  J. Doob Classical potential theory and its probabilistic counterpart , 1984 .

[10]  K. Chung The lifetime of conditional brownian motion in the plane , 1984 .

[11]  Mark A. Pinsky,et al.  Completeness of the Eigenfunctions of the Equilateral Triangle , 1985 .

[12]  M. Brelot Classical potential theory and its probabilistic counterpart , 1986 .

[13]  P. Diaconis,et al.  Strong uniform times and finite random walks , 1987 .

[14]  W. Kendall Coupled Brownian motions and partial domain monotonicity for the Neumann heat kernel , 1989 .

[15]  M. Cranston,et al.  On the noncoalescence of a two point Brownian motion reflecting on a circle , 1989 .

[16]  M. Cranston,et al.  Noncoalescence for the Skorohod equation in a convex domain of ℝ2 , 1990 .

[17]  P. Diaconis,et al.  Strong Stationary Times Via a New Form of Duality , 1990 .

[18]  R. Durrett Probability: Theory and Examples , 1993 .

[19]  W. Kendall Probability, Convexity, and Harmonic Maps with Small Image I: Uniqueness and Fine Existence , 1990 .

[20]  Joanna Mitro General theory of markov processes , 1991 .

[21]  W. Kendall The Propeller: A Counterexample to a Conjectured Criterion for the Existence of Certain Convex Functions , 1992 .

[22]  W. Kendall Convex geometry and nonconfluent γ-martingales II: well-posedness and γ-martingale convergence , 1992 .

[23]  T. Lindvall Lectures on the Coupling Method , 1992 .

[24]  R. Bass,et al.  Lifetimes of conditioned diffusions , 1992 .

[25]  Mu-Fa Chen,et al.  From Markov Chains to Non-Equilibrium Particle Systems , 1992 .

[26]  Peter Matthews Strong stationary times and eigenvalues , 1992 .

[27]  Limiting angle of brownian motion in certain two-dimensional Cartan-Hadamard manifolds , 1992 .

[28]  Wilfrid S. Kendall,et al.  Computer algebra in probability and statistics , 1993 .

[29]  Salvatore Ingrassia,et al.  Geometric Approaches to the Estimation of the Spectral Gap of Reversible Markov Chains , 1993, Combinatorics, Probability and Computing.

[30]  Wilfrid S. Kendall,et al.  Probability, Convexity, and Harmonic Maps. II. Smoothness via Probabilistic Gradient Inequalities , 1994 .

[31]  Chen Mu Application of Coupling Method to the First Eigenvalue on Manifold , 1994 .

[32]  Feng-Yu Wang Application of coupling methods to the Neumann eigenvalue problem , 1994 .

[33]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[34]  C. Mufa,et al.  Optimal markovian couplings and applications , 1994 .

[35]  Wang Fengyu Application of coupling method to the first eigenvalue on manifold , 1995 .

[36]  S. Meyn,et al.  Computable exponential convergence rates for stochastically ordered Markov processes , 1996 .

[37]  Jeffrey S. Rosenthal,et al.  Analysis of the Gibbs Sampler for a Model Related to James-stein Estimators , 2007 .

[38]  P. Diaconis,et al.  LOGARITHMIC SOBOLEV INEQUALITIES FOR FINITE MARKOV CHAINS , 1996 .

[39]  David Bruce Wilson,et al.  Exact sampling with coupled Markov chains and applications to statistical mechanics , 1996, Random Struct. Algorithms.

[40]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[41]  Jun S. Liu,et al.  Metropolized independent sampling with comparisons to rejection sampling and importance sampling , 1996, Stat. Comput..

[42]  James Allen Fill,et al.  An interruptible algorithm for perfect sampling via Markov chains , 1997, STOC '97.

[43]  W. Kendall Perfect Simulation for Spatial Point Processes , 1997 .

[44]  Wendelin Werner,et al.  A counterexample to the “hot spots” conjecture , 1998 .

[45]  Mu-Fa Chen,et al.  Trilogy of Couplings and General Formulas for Lower Bound of Spectral Gap , 1998 .

[46]  K. Burdzy,et al.  On the “Hot Spots” Conjecture of J. Rauch , 1999 .

[47]  J. Rosenthal,et al.  Convergence of Slice Sampler Markov Chains , 1999 .

[48]  Michael Cranston,et al.  Efficient coupling on the circle , 2000 .

[49]  Richard F. Bass,et al.  Fiber Brownian motion and the `hot spots''problem Duke Math , 2000 .