EXPANSIONS OF THE ORDERED ADDITIVE GROUP OF REAL NUMBERS BY TWO DISCRETE SUBGROUPS

The theory of $(\mathbb{R},<,+,\mathbb{Z},\mathbb{Z} a)$ is decidable if $a$ is quadratic. If $a$ is the golden ratio, $(\mathbb{R},<,+,\mathbb{Z},\mathbb{Z} a)$ defines multiplication by $a$. The results are established by using the Ostrowski numeration system based on the continued fraction expansion of $a$ to define the above structures in monadic second order logic of one successor. The converse that $(\mathbb{R},<,+,\mathbb{Z},\mathbb{Z} a)$ defines monadic second order logic of one successor, will also be established.

[1]  Roger Villemaire,et al.  The Theory of (N, +, Vk, V1) is Undecidable , 1992, Theor. Comput. Sci..

[2]  Christiane Frougny,et al.  Representations of numbers and finite automata , 1992, Mathematical systems theory.

[3]  Michael A. Tychonievich,et al.  Interpreting the projective hierarchy in expansions of the real line , 2012, 1203.6299.

[4]  Volker Weispfenning,et al.  Mixed real-integer linear quantifier elimination , 1999, ISSAC '99.

[5]  Philipp Hieronymi,et al.  Ostrowski Numeration Systems, Addition, and Finite Automata , 2014, Notre Dame J. Formal Log..

[6]  R. McNaughton Review: J. Richard Buchi, Weak Second-Order Arithmetic and Finite Automata; J. Richard Buchi, On a Decision Method in Restricted second Order Arithmetic , 1963, Journal of Symbolic Logic.

[7]  Mukarram Ahmad,et al.  Continued fractions , 2019, Quadratic Number Theory.

[8]  Anil Nerode,et al.  Automata theory and its applications , 2001 .

[9]  Pierre Wolper,et al.  On the Expressiveness of Real and Integer Arithmetic Automata (Extended Abstract) , 1998, ICALP.

[10]  A. Ostrowski Bemerkungen zur Theorie der Diophantischen Approximationen , 1922 .

[11]  J. R. Büchi On a Decision Method in Restricted Second Order Arithmetic , 1990 .

[12]  Nicholas Pippenger,et al.  Efficient Algorithms for Zeckendorf Arithmetic , 2012, ArXiv.

[13]  Christopher L. Miller Expansions of Dense Linear Orders with The Intermediate Value Property , 2001, J. Symb. Log..

[14]  C. Smorynski Logical Number Theory I , 1991 .

[15]  Philipp Hieronymi Defining the set of integers in expansions of the real field by a closed discrete set , 2009, 0906.4972.

[16]  Véronique Bruyère,et al.  On the Sets of Real Numbers Recognized by Finite Automata in Multiple Bases , 2008, ICALP.