An updated human snoRNAome

Abstract Small nucleolar RNAs (snoRNAs) are a class of non-coding RNAs that guide the post-transcriptional processing of other non-coding RNAs (mostly ribosomal RNAs), but have also been implicated in processes ranging from microRNA-dependent gene silencing to alternative splicing. In order to construct an up-to-date catalog of human snoRNAs we have combined data from various databases, de novo prediction and extensive literature review. In total, we list more than 750 curated genomic loci that give rise to snoRNA and snoRNA-like genes. Utilizing small RNA-seq data from the ENCODE project, our study characterizes the plasticity of snoRNA expression identifying both constitutively as well as cell type specific expressed snoRNAs. Especially, the comparison of malignant to non-malignant tissues and cell types shows a dramatic perturbation of the snoRNA expression profile. Finally, we developed a high-throughput variant of the reverse-transcriptase-based method for identifying 2′-O-methyl modifications in RNAs termed RimSeq. Using the data from this and other high-throughput protocols together with previously reported modification sites and state-of-the-art target prediction methods we re-estimate the snoRNA target RNA interaction network. Our current results assign a reliable modification site to 83% of the canonical snoRNAs, leaving only 76 snoRNA sequences as orphan.

[1]  Michelle S Scott,et al.  The emerging landscape of small nucleolar RNAs in cell biology , 2015, Wiley interdisciplinary reviews. RNA.

[2]  Feng Jiang,et al.  Genome‐wide small nucleolar RNA expression analysis of lung cancer by next‐generation deep sequencing , 2015, International journal of cancer.

[3]  P. Stadler,et al.  The coilin interactome identifies hundreds of small noncoding RNAs that traffic through Cajal bodies. , 2014, Molecular cell.

[4]  Sebastian M. Waszak,et al.  A Dual Program for Translation Regulation in Cellular Proliferation and Differentiation , 2014, Cell.

[5]  Maxwell R. Mumbach,et al.  Transcriptome-wide Mapping Reveals Widespread Dynamic-Regulated Pseudouridylation of ncRNA and mRNA , 2014, Cell.

[6]  W. Gilbert,et al.  Pseudouridine profiling reveals regulated mRNA pseudouridylation in yeast and human cells , 2014, Nature.

[7]  Michelle S. Scott,et al.  Identification of discrete classes of small nucleolar RNA featuring different ends and RNA binding protein dependency , 2014, Nucleic acids research.

[8]  B. Rogelj,et al.  The many faces of small nucleolar RNAs. , 2014, Biochimica et biophysica acta.

[9]  Zhenqiu Liu,et al.  Small nucleolar RNA signatures of lung tumor-initiating cells , 2014, Molecular Cancer.

[10]  Tamás Kiss,et al.  Targeting vertebrate intron-encoded box C/D 2′-O-methylation guide RNAs into the Cajal body , 2014, Nucleic acids research.

[11]  Ling-Ling Chen,et al.  Species-specific alternative splicing leads to unique expression of sno-lncRNAs , 2014, BMC Genomics.

[12]  Yoann Abel,et al.  Les petits ARN nucléolaires nous surprennent encore , 2014 .

[13]  Peter F Stadler,et al.  Matching of Soulmates: coevolution of snoRNAs and their targets. , 2014, Molecular biology and evolution.

[14]  V. Bourguignon-Igel,et al.  [Beyond usual functions of snoRNAs]. , 2014, Medecine sciences : M/S.

[15]  Peter F. Stadler,et al.  snoStrip: a snoRNA annotation pipeline , 2014, Bioinform..

[16]  Sean R. Eddy,et al.  Infernal 1.1: 100-fold faster RNA homology searches , 2013, Bioinform..

[17]  M. Negrini,et al.  Small nucleolar RNAs as new biomarkers in chronic lymphocytic leukemia , 2013, BMC Medical Genomics.

[18]  Joshua D. Podlevsky,et al.  Identification of purple sea urchin telomerase RNA using a next-generation sequencing based approach. , 2013, RNA.

[19]  Mihaela Zavolan,et al.  Insights into snoRNA biogenesis and processing from PAR-CLIP of snoRNA core proteins and small RNA sequencing , 2013, Genome Biology.

[20]  Runsheng Chen,et al.  A global identification and analysis of small nucleolar RNAs and possible intermediate-sized non-coding RNAs in Oryza sativa. , 2013, Molecular plant.

[21]  C. Peterson,et al.  The primer extension assay. , 2013, Cold Spring Harbor protocols.

[22]  Stefan Stamm,et al.  Processing of snoRNAs as a new source of regulatory non‐coding RNAs , 2013, BioEssays : news and reviews in molecular, cellular and developmental biology.

[23]  J. Bujnicki,et al.  MODOMICS: a database of RNA modification pathways—2013 update , 2012, Nucleic Acids Res..

[24]  Joshua D. Podlevsky,et al.  The common ancestral core of vertebrate and fungal telomerase RNAs , 2012, Nucleic acids research.

[25]  P. Tassone,et al.  The expression pattern of small nucleolar and small Cajal body-specific RNAs characterizes distinct molecular subtypes of multiple myeloma , 2012, Blood Cancer Journal.

[26]  Yuehua Wu,et al.  Long noncoding RNAs with snoRNA ends. , 2012, Molecular cell.

[27]  T. Kiss,et al.  Human intron-encoded Alu RNAs are processed and packaged into Wdr79-associated nucleoplasmic box H/ACA RNPs. , 2012, Genes & development.

[28]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[29]  Nadav S. Bar,et al.  Landscape of transcription in human cells , 2012, Nature.

[30]  A. Bhattacharya,et al.  Computational prediction and validation of C/D, H/ACA and Eh_U3 snoRNAs of Entamoeba histolytica , 2012, BMC Genomics.

[31]  F. Jiang,et al.  Small nucleolar RNAs in cancer. , 2012, Biochimica et biophysica acta.

[32]  Patrice M. Milos,et al.  An in-depth map of polyadenylation sites in cancer , 2012, Nucleic acids research.

[33]  J. Cavaille,et al.  The SNORD115 (H/MBII-52) and SNORD116 (H/MBII-85) gene clusters at the imprinted Prader–Willi locus generate canonical box C/D snoRNAs , 2012, Nucleic acids research.

[34]  Michelle S. Scott,et al.  Human box C/D snoRNA processing conservation across multiple cell types , 2011, Nucleic acids research.

[35]  J. Makarova,et al.  SNOntology: Myriads of novel snornas or just a mirage? , 2011, BMC Genomics.

[36]  Andrea Tanzer,et al.  Animal snoRNAs and scaRNAs with exceptional structures , 2011, RNA biology.

[37]  Gunter Meister,et al.  Small RNAs derived from longer non-coding RNAs. , 2011, Biochimie.

[38]  J. Feigon,et al.  Architecture of human telomerase RNA , 2011, Proceedings of the National Academy of Sciences.

[39]  B. Rogelj,et al.  Biology and applications of small nucleolar RNAs , 2011, Cellular and Molecular Life Sciences.

[40]  Michelle S. Scott,et al.  Identification of human miRNA precursors that resemble box C/D snoRNAs , 2011, Nucleic acids research.

[41]  Peter F. Stadler,et al.  PLEXY: efficient target prediction for box C/D snoRNAs , 2011, Bioinform..

[42]  Jef Rozenski,et al.  The RNA modification database, RNAMDB: 2011 update , 2010, Nucleic Acids Res..

[43]  Markus Brameier,et al.  Human box C/D snoRNAs with miRNA like functions: expanding the range of regulatory RNAs , 2010, Nucleic Acids Res..

[44]  Zasha Weinberg,et al.  R2R - software to speed the depiction of aesthetic consensus RNA secondary structures , 2011, BMC Bioinformatics.

[45]  Mihaela Zavolan,et al.  The snoRNA MBII-52 (SNORD 115) is processed into smaller RNAs and regulates alternative splicing. , 2010, Human molecular genetics.

[46]  James W. Brown,et al.  The small nucleolar ribonucleoprotein (snoRNP) database. , 2010, RNA.

[47]  Peter F. Stadler,et al.  RNAsnoop: efficient target prediction for H/ACA snoRNAs , 2010, Bioinform..

[48]  Alex Bateman,et al.  SnoPatrol: how many snoRNA genes are there? , 2010, Journal of biology.

[49]  Hui Zhou,et al.  deepBase: a database for deeply annotating and mining deep sequencing data , 2009, Nucleic Acids Res..

[50]  Xiu-Jie Wang,et al.  Systematic identification and evolutionary features of rhesus monkey small nucleolar RNAs , 2010, BMC Genomics.

[51]  A. Leschziner,et al.  A Dimeric Structure for Archaeal Box C/D Small Ribonucleoproteins , 2009, Science.

[52]  Geoffrey J. Barton,et al.  Human miRNA Precursors with Box H/ACA snoRNA Features , 2009, PLoS Comput. Biol..

[53]  J. Mattick,et al.  Small RNAs derived from snoRNAs. , 2009, RNA.

[54]  J. Makarova,et al.  Analysis of C/D box snoRNA genes in vertebrates: The number of copies decreases in placental mammals. , 2009, Genomics.

[55]  L. Wilkinson,et al.  Loss of the imprinted snoRNA mbii-52 leads to increased 5htr2c pre-RNA editing and altered 5HT2CR-mediated behaviour. , 2009, Human molecular genetics.

[56]  J. Steitz,et al.  A conserved WD40 protein binds the Cajal body localization signal of scaRNP particles. , 2009, Molecular cell.

[57]  Tamás Kiss,et al.  18S rRNA processing requires base pairings of snR30 H/ACA snoRNA to eukaryote-specific 18S sequences , 2009, The EMBO journal.

[58]  Toralf Kirsten,et al.  Evolution of Spliceosomal snRNA Genes in Metazoan Animals , 2008, Journal of Molecular Evolution.

[59]  N. Rajewsky,et al.  A human snoRNA with microRNA-like functions. , 2008, Molecular cell.

[60]  Peter F. Stadler,et al.  SnoReport: computational identification of snoRNAs with unknown targets , 2008, Bioinform..

[61]  N. Ulyanov,et al.  Pseudoknot structures with conserved base triples in telomerase RNAs of ciliates , 2007, Nucleic acids research.

[62]  E. Bertrand,et al.  A Dynamic Scaffold of Pre-snoRNP Factors Facilitates Human Box C/D snoRNP Assembly , 2007, Molecular and Cellular Biology.

[63]  R. Terns,et al.  Non-coding RNAs: lessons from the small nuclear and small nucleolar RNAs , 2007, Nature Reviews Molecular Cell Biology.

[64]  Ming Zhang,et al.  Sno/scaRNAbase: a curated database for small nucleolar RNAs and cajal body-specific RNAs , 2006, Nucleic Acids Res..

[65]  Liang-Hu Qu,et al.  snoSeeker: an advanced computational package for screening of guide and orphan snoRNA genes in the human genome , 2006, Nucleic acids research.

[66]  S. Stamm,et al.  The snoRNA HBII-52 Regulates Alternative Splicing of the Serotonin Receptor 2C , 2006, Science.

[67]  Laurent Lestrade,et al.  snoRNA-LBME-db, a comprehensive database of human H/ACA and C/D box snoRNAs , 2005, Nucleic Acids Res..

[68]  Todd M Lowe,et al.  A computational screen for mammalian pseudouridylation guide H/ACA RNAs. , 2006, RNA.

[69]  Peter F. Stadler,et al.  Thermodynamics of RNA-RNA Binding , 2006, German Conference on Bioinformatics.

[70]  Brian S. Roberts,et al.  Simple, quantitative primer-extension PCR assay for direct monitoring of microRNAs and short-interfering RNAs. , 2005, RNA.

[71]  Jef Rozenski,et al.  The Small Subunit rRNA Modification Database , 2004, Nucleic Acids Res..

[72]  K. Hartmuth,et al.  Modified nucleotides at the 5' end of human U2 snRNA are required for spliceosomal E-complex formation. , 2004, RNA.

[73]  Tamás Kiss,et al.  Human telomerase RNA and box H/ACA scaRNAs share a common Cajal body–specific localization signal , 2004, The Journal of cell biology.

[74]  Tamás Kiss,et al.  A common sequence motif determines the Cajal body‐specific localization of box H/ACA scaRNAs , 2003, The EMBO journal.

[75]  Sean R. Eddy,et al.  Rfam: an RNA family database , 2003, Nucleic Acids Res..

[76]  Wayne A. Decatur,et al.  rRNA modifications and ribosome function. , 2002, Trends in biochemical sciences.

[77]  Tamás Kiss,et al.  Cajal body‐specific small nuclear RNAs: a novel class of 2′‐O‐methylation and pseudouridylation guide RNAs , 2002, The EMBO journal.

[78]  T. Kiss Small Nucleolar RNAs An Abundant Group of Noncoding RNAs with Diverse Cellular Functions , 2002, Cell.

[79]  C Gaspin,et al.  Box C/D RNA guides for the ribose methylation of archaeal tRNAs. The tRNATrp intron guides the formation of two ribose-methylated nucleosides in the mature tRNATrp. , 2001, Nucleic acids research.

[80]  B. Maden,et al.  Mapping 2'-O-methyl groups in ribosomal RNA. , 2001, Methods.

[81]  Tamás Kiss,et al.  Small nucleolar RNA‐guided post‐transcriptional modification of cellular RNAs , 2001, The EMBO journal.

[82]  A. Hüttenhofer,et al.  Identification of brain-specific and imprinted small nucleolar RNA genes exhibiting an unusual genomic organization. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[83]  X. Darzacq,et al.  Processing of Intron-Encoded Box C/D Small Nucleolar RNAs Lacking a 5′,3′-Terminal Stem Structure , 2000, Molecular and Cellular Biology.

[84]  Tamás Kiss,et al.  Elements essential for accumulation and function of small nucleolar RNAs directing site‐specific pseudouridylation of ribosomal RNAs , 1999, The EMBO journal.

[85]  Jeffrey B. Cheng,et al.  A Box H/ACA Small Nucleolar RNA-Like Domain at the Human Telomerase RNA 3′ End , 1999, Molecular and Cellular Biology.

[86]  J. Steitz,et al.  Modifications of U2 snRNA are required for snRNP assembly and pre‐mRNA splicing , 1998, The EMBO journal.

[87]  D. Tollervey,et al.  Birth of the snoRNPs: the evolution of the modification-guide snoRNAs. , 1998, Trends in biochemical sciences.

[88]  D. Tollervey,et al.  The box H + ACA snoRNAs carry Cbf5p, the putative rRNA pseudouridine synthase. , 1998, Genes & development.

[89]  D. Tollervey,et al.  Function and synthesis of small nucleolar RNAs. , 1997, Current opinion in cell biology.

[90]  Tamás Kiss,et al.  Site-Specific Pseudouridine Formation in Preribosomal RNA Is Guided by Small Nucleolar RNAs , 1997, Cell.

[91]  T. Kiss,et al.  The family of box ACA small nucleolar RNAs is defined by an evolutionarily conserved secondary structure and ubiquitous sequence elements essential for RNA accumulation. , 1997, Genes & development.

[92]  J Ofengand,et al.  Mapping to nucleotide resolution of pseudouridine residues in large subunit ribosomal RNAs from representative eukaryotes, prokaryotes, archaebacteria, mitochondria and chloroplasts. , 1997, Journal of molecular biology.

[93]  J. Bachellerie,et al.  Processing of mammalian rRNA precursors at the 3' end of 18S rRNA. Identification of cis-acting signals suggests the involvement of U13 small nucleolar RNA. , 1996, European journal of biochemistry.

[94]  J. Bachellerie,et al.  Targeted ribose methylation of RNA in vivo directed by tailored antisense RNA guides , 1996, Nature.

[95]  T. Maden Click here for methylation , 1996, Nature.

[96]  Laurie Smith,et al.  The RNA World of the Nucleolus: Two Major Families of Small RNAs Defined by Different Box Elements with Related Functions , 1996, Cell.

[97]  J. Bachellerie,et al.  Intron-encoded, antisense small nucleolar RNAs: the characterization of nine novel species points to their direct role as guides for the 2'-O-ribose methylation of rRNAs. , 1996, Journal of molecular biology.

[98]  Tamás Kiss,et al.  Site-Specific Ribose Methylation of Preribosomal RNA: A Novel Function for Small Nucleolar RNAs , 1996, Cell.

[99]  T. Maden Ribosomal RNA. Click here for methylation. , 1996, Nature.

[100]  M. Fournier,et al.  The small nucleolar RNAs. , 1995, Annual review of biochemistry.

[101]  B. Maden,et al.  Classical and novel approaches to the detection and localization of the numerous modified nucleotides in eukaryotic ribosomal RNA. , 1995, Biochimie.

[102]  D. Tollervey,et al.  Temperature-sensitive mutations demonstrate roles for yeast fibrillarin in pre-rRNA processing, pre-rRNA methylation, and ribosome assembly , 1993, Cell.

[103]  J. Steitz,et al.  The U3 small nucleolar ribonucleoprotein functions in the first step of preribosomal RNA processing , 1990, Cell.

[104]  E. Craig,et al.  Primer extension analysis of RNA. , 1989, Methods in enzymology.

[105]  B. Maden Identification of the locations of the methyl groups in 18 S ribosomal RNA from Xenopus laevis and man. , 1986, Journal of molecular biology.