Classification and Construction of Bivariate Subdivision Schemes
暂无分享,去创建一个
[1] Projectable Multivariate Refinable Functions and Biorthogonal Wavelets , 2002 .
[2] D. Levin,et al. Subdivision schemes in geometric modelling , 2002, Acta Numerica.
[3] Bin Han,et al. Vector cascade algorithms and refinable function vectors in Sobolev spaces , 2003, J. Approx. Theory.
[4] Charles T. Loop. Smooth Ternary Subdivision of Triangle Meshes , 2002 .
[5] Bin Han,et al. Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..
[6] Bin Han,et al. Computing the Smoothness Exponent of a Symmetric Multivariate Refinable Function , 2002, SIAM J. Matrix Anal. Appl..
[7] N. Dyn,et al. A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.
[8] Marc Alexa,et al. Refinement operators for triangle meshes , 2002, Comput. Aided Geom. Des..
[9] Bin Han,et al. Symmetry Property and Construction of Wavelets With a General Dilation Matrix , 2001 .
[10] C. Micchelli,et al. Stationary Subdivision , 1991 .
[11] R. Jia,et al. Multivariate refinement equations and convergence of subdivision schemes , 1998 .
[12] H. Ehlers. LECTURERS , 1948, Statistics for Astrophysics.
[13] Qingtang Jiang,et al. On the Analysis of 3-Subdivision Schemes , 2001 .
[14] Bin Han,et al. Quincunx fundamental refinable functions and quincunx biorthogonal wavelets , 2002, Math. Comput..