Nonparaxial design of generalized axicons.

The geometric law of energy conservation is utilized in evaluating the phase transmittance function for axicons with arbitrary distribution of the on-axis intensity. Several simple analytical solutions are presented, and a computer-generated holographic version of the uniform-intensity axicon is examined.

[1]  G. Häusler,et al.  Light sectioning with large depth and high resolution. , 1988, Applied optics.

[2]  L W Casperson,et al.  Air breakdown in a radial-mode focusing element. , 1974, Applied optics.

[3]  Dietrich Marcuse,et al.  Principles of Optical Fiber Measurements , 1981 .

[4]  J. Rogers,et al.  Optical performance of holographic kinoforms. , 1989, Applied optics.

[5]  Zbigniew Jaroszewicz,et al.  The Light Sword Optical Element-a New Diffraction Structure with Extended Depth of Focus , 1990 .

[6]  Leopold B. Felsen,et al.  Real spectra, complex spectra, compact spectra , 1986 .

[7]  L. Soroko,et al.  II Axicons and Meso-Optical Imaging Devices , 1989 .

[8]  M Rioux,et al.  Linear, annular, and radial focusing with axicons and applications to laser machining. , 1978, Applied optics.

[9]  Carlos Gómez-Reino,et al.  Diffraction Patterns and Zone Plates Produced by Thin Linear Axicons , 1986 .

[10]  M Rioux,et al.  Ring pattern of a lens-axicon doublet illuminated by a Gaussian beam. , 1978, Applied optics.

[11]  A. Friberg,et al.  Holographic generation of diffraction-free beams. , 1988, Applied optics.

[12]  J. Mcleod,et al.  Axicons and Their Uses , 1960 .

[13]  J Turunen,et al.  Realization of general nondiffracting beams with computer-generated holograms. , 1989, Journal of the Optical Society of America. A, Optics and image science.

[14]  J. Mcleod The Axicon: A New Type of Optical Element , 1954 .

[15]  G. Hausler,et al.  Triangulation With Expanded Range Of Depth , 1985 .

[16]  J Sochacki,et al.  Phase retardation of the uniform-intensity axilens. , 1992, Optics letters.