Serial biomechanical comparison of edematous, normal, and collagen crosslinked human donor corneas using optical coherence elastography

[1]  Tibor Juhasz,et al.  Three-dimensional distribution of transverse collagen fibers in the anterior human corneal stroma. , 2013, Investigative ophthalmology & visual science.

[2]  H. Hatami-Marbini,et al.  Hydration dependent biomechanical properties of the corneal stroma. , 2013, Experimental eye research.

[3]  S. Marcos,et al.  Effect of hydration state and storage media on corneal biomechanical response from in vitro inflation tests. , 2013, Journal of refractive surgery.

[4]  Matthew R. Ford,et al.  Biological and biomechanical responses to traditional epithelium-off and transepithelial riboflavin-UVA CXL techniques in rabbits. , 2013, Journal of refractive surgery.

[5]  Giuliano Scarcelli,et al.  Brillouin microscopy of collagen crosslinking: noncontact depth-dependent analysis of corneal elastic modulus. , 2013, Investigative ophthalmology & visual science.

[6]  S. Yun,et al.  In vivo Brillouin optical microscopy of the human eye , 2012, Optics express.

[7]  Tibor Juhasz,et al.  Nonlinear optical macroscopic assessment of 3-D corneal collagen organization and axial biomechanics. , 2011, Investigative ophthalmology & visual science.

[8]  A. Quantock,et al.  Riboflavin/UVA Collagen Cross-Linking-Induced Changes in Normal and Keratoconus Corneal Stroma , 2011, PloS one.

[9]  Derek K. Gerstmann,et al.  In vivo three-dimensional optical coherence elastography◊ , 2011, Optics express.

[10]  D. Sampson,et al.  Spectroscopic optical coherence elastography , 2010, Optics express.

[11]  A. Pérez-Escudero,et al.  Corneal biomechanical changes after collagen cross-linking from porcine eye inflation experiments. , 2010, Investigative ophthalmology & visual science.

[12]  Xing Liang,et al.  Biomechanical Properties of In Vivo Human Skin From Dynamic Optical Coherence Elastography , 2010, IEEE Transactions on Biomedical Engineering.

[13]  D. Sampson,et al.  In vivo dynamic optical coherence elastography using a ring actuator. , 2009, Optics express.

[14]  S. Boppart,et al.  Acoustomotive optical coherence elastography for measuring material mechanical properties. , 2009, Optics letters.

[15]  A. Sinha Roy,et al.  Effects of altered corneal stiffness on native and postoperative LASIK corneal biomechanical behavior: A whole-eye finite element analysis. , 2009, Journal of refractive surgery.

[16]  P. K. Jensen,et al.  In vitro measurement of corneal strain, thickness, and curvature using digital image processing. , 2009, Acta ophthalmologica Scandinavica.

[17]  D. Sampson,et al.  Audio frequency in vivo optical coherence elastography , 2009, Physics in medicine and biology.

[18]  Sander R. Dubovy,et al.  Corneal ectasia after excimer laser keratorefractive surgery: histopathology, ultrastructure, and pathophysiology. , 2008, Ophthalmology.

[19]  S. Tuft,et al.  Ultrastructural analysis of collagen fibrils and proteoglycans in keratoconus , 2008, Acta ophthalmologica.

[20]  S. Boppart,et al.  Optical micro-scale mapping of dynamic biomechanical tissue properties. , 2008, Optics express.

[21]  P. E. Dantas,et al.  [Trends in the indications for penetrating keratoplasty]. , 2008, Arquivos brasileiros de oftalmologia.

[22]  J. Alió,et al.  Corneal biomechanical properties in normal, post‐laser in situ keratomileusis, and keratoconic eyes , 2007, Journal of cataract and refractive surgery.

[23]  Nico de Jong,et al.  Robust intravascular optical coherence elastography by line correlations , 2007, Physics in medicine and biology.

[24]  Teruo Nishida,et al.  Second-harmonic imaging microscopy of normal human and keratoconus cornea. , 2007, Investigative ophthalmology & visual science.

[25]  Ruikang K. Wang,et al.  OCT-based elastography for large and small deformations. , 2006, Optics express.

[26]  M. H. De la Torre-Ibarra,et al.  Double-shot depth-resolved displacement field measurement using phase-contrast spectral optical coherence tomography. , 2006, Optics express.

[27]  M. Brezinski,et al.  Quantitative optical coherence tomographic elastography: method for assessing arterial mechanical properties. , 2006, The British journal of radiology.

[28]  Brett E. Bouma,et al.  Tissue Elasticity Estimation with Optical Coherence Elastography: Toward Mechanical Characterization of In Vivo Soft Tissue , 2005, Annals of Biomedical Engineering.

[29]  Alexander Wei,et al.  Magnetomotive contrast for in vivo optical coherence tomography. , 2005, Optics express.

[30]  Yifei Huang,et al.  Changes in collagen orientation and distribution in keratoconus corneas. , 2005, Investigative ophthalmology & visual science.

[31]  A. Guirao Theoretical elastic response of the cornea to refractive surgery: risk factors for keratectasia. , 2005, Journal of refractive surgery.

[32]  William J Dupps,et al.  Biomechanical modeling of corneal ectasia. , 2005, Journal of refractive surgery.

[33]  D. Luce Determining in vivo biomechanical properties of the cornea with an ocular response analyzer , 2005, Journal of cataract and refractive surgery.

[34]  M. Wagoner,et al.  Changing Indications for Corneal Transplantation at the King Khaled Eye Specialist Hospital (1983–2002) , 2004, Cornea.

[35]  J. Fujimoto,et al.  Optical coherence tomographic elastography technique for measuring deformation and strain of atherosclerotic tissues , 2004, Heart.

[36]  T. Seiler,et al.  Riboflavin/ultraviolet-a-induced collagen crosslinking for the treatment of keratoconus. , 2003, American journal of ophthalmology.

[37]  G. Kymionis,et al.  Corneal ectasia induced by laser in situ keratomileusis , 2001, Journal of cataract and refractive surgery.

[38]  W. Dupps,et al.  Effect of acute biomechanical changes on corneal curvature after photokeratectomy. , 2001, Journal of refractive surgery.

[39]  K. Dobbins,et al.  Trends in the Indications for Penetrating Keratoplasty in the Midwestern United States , 2000, Cornea.

[40]  C. Roberts The cornea is not a piece of plastic. , 2000, Journal of refractive surgery.

[41]  J. Schmitt OCT elastography: imaging microscopic deformation and strain of tissue. , 1998, Optics express.

[42]  M. Terry,et al.  Hydration changes in cadaver eyes prepared for practice and experimental surgery. , 1994, Archives of ophthalmology.

[43]  J. Ophir,et al.  Elastography: A Quantitative Method for Imaging the Elasticity of Biological Tissues , 1991, Ultrasonic imaging.

[44]  H. Oxlund,et al.  Biomechanical properties of keratoconus and normal corneas. , 1980, Experimental eye research.

[45]  S. Yun,et al.  Brillouin optical microscopy for corneal biomechanics. , 2012, Investigative ophthalmology & visual science.

[46]  A. Sinha Roy,et al.  Patient-specific modeling of corneal refractive surgery outcomes and inverse estimation of elastic property changes. , 2011, Journal of biomechanical engineering.

[47]  Matthew R. Ford,et al.  Method for optical coherence elastography of the cornea. , 2011, Journal of biomedical optics.

[48]  H. Grossniklaus,et al.  Depth-dependent cohesive tensile strength in human donor corneas: implications for refractive surgery. , 2008, Journal of refractive surgery.

[49]  William J Dupps,et al.  Surface wave elastometry of the cornea in porcine and human donor eyes. , 2007, Journal of refractive surgery.

[50]  H. Tchah,et al.  Human cadaver corneal thinning for experimental refractive surgery. , 1989, Refractive & corneal surgery.