Certified dense linear system solving

Abstract A randomized algorithm is given for solving a system of linear equations over a principal ideal domain. The algorithm returns a solution vector which has minimal denominator. A certificate of minimality is also computed. A given system has a Diophantine solution precisely when the minimal denominator is one. Cost estimates are given for systems over the ring of integers and ring of polynomials with coefficients from a field.

[1]  J. Rosser,et al.  Approximate formulas for some functions of prime numbers , 1962 .

[2]  Arne Storjohann,et al.  Rational solutions of singular linear systems , 2000, ISSAC.

[3]  Joachim von zur Gathen,et al.  Modern Computer Algebra , 1998 .

[4]  S. Lang Algebraic Number Theory , 1971 .

[5]  Mark Giesbrecht,et al.  Nearly Optimal Algorithms for Canonical Matrix Forms , 1995, SIAM J. Comput..

[6]  Victor Y. Pan,et al.  Fast rectangular matrix multiplications and improving parallel matrix computations , 1997, PASCO '97.

[7]  Arne Storjohann,et al.  Fast Algorithms for for Linear Algebra Modulo N , 1998, ESA.

[8]  Numerische Mathematik Exact Solution of Linear Equations Using P-Adie Expansions* , 2005 .

[9]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[10]  B. David Saunders,et al.  Certifying inconsistency of sparse linear systems , 1997, SIGS.

[11]  Douglas H. Wiedemann Solving sparse linear equations over finite fields , 1986, IEEE Trans. Inf. Theory.

[12]  Rudolf Lide,et al.  Finite fields , 1983 .

[13]  Arne Storjohann,et al.  Diophantine linear system solving , 1999, ISSAC '99.

[14]  Victor Shoup,et al.  Fast construction of irreducible polynomials over finite fields , 1994, SODA '93.

[15]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[16]  Mark Giesbrecht,et al.  Efficient parallel solution of sparse systems of linear diophantine equations , 1997, PASCO '97.

[17]  G. Hardy,et al.  An Introduction to the Theory of Numbers , 1938 .

[18]  Victor Y. Pan,et al.  Acceleration of Euclidean Algorithm and Rational Number Reconstruction , 2003, SIAM J. Comput..

[19]  Robert T. Moenck,et al.  Approximate algorithms to derive exact solutions to systems of linear equations , 1979, EUROSAM.

[20]  A. Storjohann Algorithms for matrix canonical forms , 2000 .

[21]  Arne Storjohann,et al.  High-order lifting and integrality certification , 2003, J. Symb. Comput..