Methane oxidation associated with submerged brown mosses reduces methane emissions from Siberian polygonal tundra

1. Methane (CH4) oxidation (methanotrophy) associated with submerged brown moss species occurs in polygonal tundra environments of the Siberian Arctic. Methanotrophic bacteria living in close association with mosses are thus not restricted to Sphagnum species and low‐pH peatlands.

[1]  J. Damsté,et al.  Global prevalence of methane oxidation by symbiotic bacteria in peat-moss ecosystems , 2010 .

[2]  E. Tuittila,et al.  The role of Sphagnum mosses in the methane cycling of a boreal mire. , 2010, Ecology.

[3]  M. Wilmking,et al.  A comparison of linear and exponential regression for estimating diffusive CH4 fluxes by closed-chambers in peatlands , 2010 .

[4]  Cheng-Sen Li,et al.  Drepanocladus longifolius (Amblystegiaceae), an addition to the moss flora of King George Island, South Shetland Islands, with a review of Antarctic benthic mosses , 2009, Polar Biology.

[5]  Guido Grosse,et al.  Land cover classification of tundra environments in the Arctic Lena Delta based on Landsat 7 ETM+ data and its application for upscaling of methane emissions , 2009 .

[6]  J. Damsté,et al.  A reanalysis of phospholipid fatty acids as ecological biomarkers for methanotrophic bacteria , 2009, The ISME Journal.

[7]  M. Blumenberg,et al.  Methane turnover and temperature response of methane-oxidizing bacteria in permafrost-affected soils of northeast Siberia , 2008 .

[8]  M. Schloter,et al.  Influence of different Sinorhizobium meliloti inocula on abundance of genes involved in nitrogen transformations in the rhizosphere of alfalfa (Medicago sativa L.). , 2008, Environmental microbiology.

[9]  J. Boike,et al.  Environmental controls on ecosystem‐scale CH4 emission from polygonal tundra in the Lena River Delta, Siberia , 2008 .

[10]  F. Chapin,et al.  Methane production and bubble emissions from arctic lakes: Isotopic implications for source pathways and ages , 2008 .

[11]  S. Hagemann,et al.  Vulnerability of Permafrost Carbon to Climate Change: Implications for the Global Carbon Cycle , 2008 .

[12]  E. Pfeiffer,et al.  Methane emission from Siberian arctic polygonal tundra: eddy covariance measurements and modeling , 2008 .

[13]  N. Shurpali,et al.  CO 2 flux determination by closed-chamber methods can be seriously biased by inappropriate application of linear regression , 2007 .

[14]  F. Chapin,et al.  Thermokarst Lakes as a Source of Atmospheric CH4 During the Last Deglaciation , 2007, Science.

[15]  R. Dickinson,et al.  Couplings between changes in the climate system and biogeochemistry , 2007 .

[16]  F. Chapin,et al.  Methane bubbling from Siberian thaw lakes as a positive feedback to climate warming , 2006, Nature.

[17]  Jacob R Waldbauer,et al.  Steroids, triterpenoids and molecular oxygen , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[18]  R. Seppelt,et al.  Deep-water occurrence of the moss Bryum pseudotriquetrum in Radok Lake, Amery Oasis, East Antarctica , 2006, Polar Biology.

[19]  Jan G. M. Roelofs,et al.  Methanotrophic symbionts provide carbon for photosynthesis in peat bogs , 2005, Nature.

[20]  Zucong Cai,et al.  Plant species effects on methane emissions from freshwater marshes , 2005 .

[21]  R. Knowles,et al.  Roles of moss species and habitat in methane consumption potential in a northern peatland , 2004, Wetlands.

[22]  E. Pfeiffer,et al.  Microbial controls on methane fluxes from a polygonal tundra of the Lena Delta, Siberia , 2003 .

[23]  Katharine Hayhoe,et al.  Atmospheric methane and global change , 2002 .

[24]  J. Middelburg,et al.  Stable isotopes and biomarkers in microbial ecology. , 2002, FEMS microbiology ecology.

[25]  Georg Schwamborn,et al.  Late Quaternary sedimentation history of the Lena Delta , 2002 .

[26]  H. Tomassen,et al.  Substrate‐derived CO2 is important in the development of Sphagnum spp. , 2001 .

[27]  D. Bourne,et al.  Comparison of pmoA PCR Primer Sets as Tools for Investigating Methanotroph Diversity in Three Danish Soils , 2001, Applied and Environmental Microbiology.

[28]  K. Seto,et al.  Benthic moss pillars in Antarctic lakes , 1999, Polar Biology.

[29]  R. Barry,et al.  Statistics and characteristics of permafrost and ground-ice distribution in the Northern Hemisphere , 1999 .

[30]  K. Sand‐Jensen,et al.  Slow growth and decomposition of mosses in Arctic lakes , 1999 .

[31]  J. Middelburg,et al.  SEASONAL VARIATION IN METHANE OXIDATION BY THE RHIZOSPHERE OF PHRAGMITES AUSTRALIS AND SCIRPUS LACUSTRIS , 1998 .

[32]  Sergey Zimov,et al.  North Siberian Lakes: A Methane Source Fueled by Pleistocene Carbon , 1997 .

[33]  V. Spitzer Structure analysis of fatty acids by gas chromatography--low resolution electron impact mass spectrometry of their 4,4-dimethyloxazoline derivatives--a review. , 1996, Progress in lipid research.

[34]  A Costello,et al.  Evidence that particulate methane monooxygenase and ammonia monooxygenase may be evolutionarily related. , 1995, FEMS microbiology letters.

[35]  J. Keeley,et al.  Carbon: freshwater plants , 1992 .

[36]  H. Prins,et al.  Bicarbonate utilization: Function and mechanism , 1989 .

[37]  T. Hanya,et al.  High abundance of algal 24-ethylcholesterol in Antarctic lake sediment , 1982, Nature.

[38]  B. Parker,et al.  Bryum Hedw. Collected from Lake Vanda, Antarctica , 1982 .

[39]  D. Spence,et al.  THE DIFFERENTIAL ABILITY OF AQUATIC PLANTS TO UTILIZE THE INORGANIC CARBON SUPPLY IN FRESH WATERS , 1981 .

[40]  R. Heywood,et al.  Deep-water Mosses in Antarctic Lakes , 1973, Nature.

[41]  D. Wagner,et al.  Abundance, distribution and potential activity of methane oxidizing bacteria in permafrost soils from the Lena Delta, Siberia. , 2007, Environmental microbiology.

[42]  Hans Joosten,et al.  Distribution, diversity, development and dynamics of polygon mires: examples from Northeast Yakutia (Siberia) , 2007 .

[43]  D. Andersen,et al.  Submerged Aquatic Bryophytes in Colour Lake, a Naturally Acidic Polar Lake with Occasional Year-Round Ice-Cover , 2002 .

[44]  J. Volkman,et al.  Sterols in microorganisms , 2002, Applied Microbiology and Biotechnology.

[45]  L. Fay,et al.  Location of double bonds in polyunsaturated fatty acids by gas chromatography-mass spectrometry after 4,4-dimethyloxazoline derivatization , 1991 .

[46]  A. Matsuo,et al.  Sterols of mosses , 1991 .