Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system

Abstract The Convected Scheme (CS) is a ‘forward-trajectory’ semi-Lagrangian method for solution of transport equations, which has been most often applied to the kinetic description of plasmas and rarefied neutral gases. In its simplest form, the CS propagates the solution forward in time by advecting the so-called ‘moving cells’ along their characteristic trajectories, and by remapping them on the mesh at the end of the time step. The CS is conservative, positivity preserving, simple to implement, and it is not subject to time step restriction to maintain stability. Recently (Guclu and Hitchon, 2012 [1] ) a new methodology was introduced for reducing numerical diffusion, based on a modified equation analysis: the remapping error was compensated by applying small corrections to the final position of the moving cells prior to remapping. While the spatial accuracy was increased from 2nd to 4th order, the new scheme retained the important properties of the original method, and was shown to be extremely simple and efficient for constant advection problems. Here the CS is applied to the solution of the Vlasov–Poisson system, which describes the evolution of the velocity distribution function of a collection of charged particles subject to reciprocal Coulomb interactions. The Vlasov equation is split into two constant advection equations, one in configuration space and one in velocity space, and high order time accuracy is achieved by proper composition of the operators. The splitting procedure enables us to use the constant advection solver, which we extend to arbitrarily high order of accuracy in time and space: a new improved procedure is given, which makes the calculation of the corrections straightforward. Focusing on periodic domains, we describe a spectrally accurate scheme based on the fast Fourier transform; the proposed implementation is strictly conservative and positivity preserving. The ability to correctly reproduce the system dynamics, as well as resolving small-scale features in the solution, is shown in classical 1D–1V test cases, both in the linear and the non-linear regimes.

[1]  Wojciech Rozmus,et al.  A symplectic integration algorithm for separable Hamiltonian functions , 1990 .

[2]  Ernst Hairer,et al.  Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .

[3]  Chi-Wang Shu,et al.  Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..

[4]  Eric Sonnendrücker,et al.  Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations , 2011, Numerische Mathematik.

[5]  Y. C. Zhou,et al.  A windowed Fourier pseudospectral method for hyperbolic conservation laws , 2006, J. Comput. Phys..

[6]  Jeffrey A. F. Hittinger,et al.  Block-structured adaptive mesh refinement algorithms for Vlasov simulation , 2011, J. Comput. Phys..

[7]  Robert I. McLachlan,et al.  On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..

[8]  E. Hairer,et al.  Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .

[9]  Hideo Sugama,et al.  A Nondissipative Simulation Method for the Drift Kinetic Equation , 2001 .

[10]  Alexander Kurganov,et al.  The Order of Accuracy of Quadrature Formulae for Periodic Functions , 2009 .

[11]  David C. Seal,et al.  A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..

[12]  Creutz,et al.  Higher-order hybrid Monte Carlo algorithms. , 1989, Physical review letters.

[13]  Yingda Cheng,et al.  Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system , 2013, J. Comput. Phys..

[14]  H. Yoshida Construction of higher order symplectic integrators , 1990 .

[15]  R. Ruth,et al.  Fourth-order symplectic integration , 1990 .

[16]  Daniel J. Koch,et al.  An efficient scheme for convection-dominated transport , 1989 .

[17]  G. Knorr,et al.  The integration of the vlasov equation in configuration space , 1976 .

[18]  P. Lax,et al.  Systems of conservation laws , 1960 .

[19]  Roy W. Gould,et al.  PLASMA WAVE ECHO. , 1967 .

[20]  C. Villani,et al.  On Landau damping , 2009, 0904.2760.

[21]  M. Suzuki,et al.  Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .

[22]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[23]  M. Kruskal,et al.  Exact Nonlinear Plasma Oscillations , 1957 .

[24]  Jack Schaeffer Higher Order Time Splitting for the Linear Vlasov Equation , 2009, SIAM J. Numer. Anal..

[25]  Eric R. Keiter,et al.  A computational investigation of the effects of varying discharge geometry for an inductively coupled plasma , 2000 .

[26]  Andrew Christlieb,et al.  Integral and Lagrangian simulations of particle and radiation transport in plasma , 2009 .

[27]  T. Simko,et al.  Ion transport simulation in a low-pressure hydrogen gas at high electric fields by a convective-scheme method , 1994 .

[28]  H. Sugama,et al.  Vlasov and Drift Kinetic Simulation Methods Based on the Symplectic Integrator , 2005 .

[29]  P. Bertrand,et al.  Conservative numerical schemes for the Vlasov equation , 2001 .

[30]  Andrew J. Christlieb,et al.  A conservative high order semi-Lagrangian WENO method for the Vlasov equation , 2010, J. Comput. Phys..

[31]  R. W. Motley,et al.  LANDAU DAMPING OF ION ACOUSTIC WAVES IN HIGHLY IONIZED PLASMAS , 1964 .

[32]  G. Strang On the Construction and Comparison of Difference Schemes , 1968 .

[33]  Stefano Markidis,et al.  The energy conserving particle-in-cell method , 2011, J. Comput. Phys..

[34]  Wei Guo,et al.  Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation , 2013, J. Comput. Phys..

[35]  T. Arber,et al.  A Critical Comparison of Eulerian-Grid-Based Vlasov Solvers , 2002 .

[36]  Alexander J. Klimas,et al.  A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions , 1987 .

[37]  Fernando Casas,et al.  Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.

[38]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[39]  James E. Lawler,et al.  Accurate models of collisions in glow discharge simulations , 1994 .

[40]  Yaman Güçlü,et al.  A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows , 2012, J. Comput. Phys..

[41]  Nicolas Crouseilles,et al.  High order Runge-Kutta-Nystrom splitting methods for the Vlasov-Poisson equation , 2011 .

[42]  R. Courant,et al.  Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .

[43]  Phillip Colella,et al.  An Adaptive, High-Order Phase-Space Remapping for the Two Dimensional Vlasov-Poisson Equations , 2012, SIAM J. Sci. Comput..

[44]  J W Banks,et al.  A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation , 2009, IEEE Transactions on Plasma Science.

[45]  Yasushi Matsunaga,et al.  Kinetic simulation on ion acoustic wave in gas discharge plasma with convective scheme , 2000 .

[46]  William Nicholas Guy Hitchon,et al.  Self-consistent kinetic model of an entire dc discharge , 1993 .

[47]  Luis Chacón,et al.  An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..

[48]  Stefano Markidis,et al.  A Multi Level Multi Domain Method for Particle In Cell plasma simulations , 2012, J. Comput. Phys..

[49]  C. Cavazzoni,et al.  A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .

[50]  Fernando Casas,et al.  Symplectic Integration with Processing: A General Study , 1999, SIAM J. Sci. Comput..

[51]  William Nicholas Guy Hitchon,et al.  Self-consistent kinetic simulation of plasmas , 2000 .

[52]  C. B. Wharton,et al.  COLLISIONLESS DAMPING OF ELECTROSTATIC PLASMA WAVES , 1964 .

[53]  Eric Sonnendrücker,et al.  Vlasov simulations on an adaptive phase-space grid , 2004, Comput. Phys. Commun..

[54]  Eric Sonnendrücker,et al.  Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..

[55]  Magdi Shoucri,et al.  Eulerian Vlasov codes , 2005, Comput. Phys. Commun..

[56]  Nicolas Besse,et al.  Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .

[57]  W. Nicholas G. Hitchon Plasma Processes for Semiconductor Fabrication , 1999 .

[58]  M. Falcone,et al.  Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .

[59]  J. M. Sanz-Serna,et al.  Partitioned Runge-Kutta methods for separable Hamiltonian problems , 1993 .

[60]  T. Yabe,et al.  Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .

[61]  Fernando Casas,et al.  On the Numerical Integration of Ordinary Differential Equations by Processed Methods , 2004, SIAM J. Numer. Anal..

[62]  Lev Davidovich Landau,et al.  On the vibrations of the electronic plasma , 1946 .

[63]  D. C. Barnes,et al.  A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes , 2013, J. Comput. Phys..

[64]  R W Hockney,et al.  Computer Simulation Using Particles , 1966 .

[65]  S. Blanes,et al.  Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .

[66]  E. Sonnendrücker,et al.  The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .

[67]  Luis Chacón,et al.  Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations , 2013, J. Comput. Phys..

[68]  A. Klimas,et al.  A splitting algorithm for Vlasov simulation with filamentation filtration , 1994 .

[69]  J. Butcher The effective order of Runge-Kutta methods , 1969 .

[70]  C. Birdsall,et al.  Plasma Physics via Computer Simulation , 2018 .

[71]  E. Sonnendrücker,et al.  Comparison of Eulerian Vlasov solvers , 2003 .

[72]  Robert I. McLachlan Families of High-Order Composition Methods , 2004, Numerical Algorithms.