Arbitrarily high order Convected Scheme solution of the Vlasov-Poisson system
暂无分享,去创建一个
[1] Wojciech Rozmus,et al. A symplectic integration algorithm for separable Hamiltonian functions , 1990 .
[2] Ernst Hairer,et al. Solving Ordinary Differential Equations I: Nonstiff Problems , 2009 .
[3] Chi-Wang Shu,et al. Positivity preserving semi-Lagrangian discontinuous Galerkin formulation: Theoretical analysis and application to the Vlasov-Poisson system , 2011, J. Comput. Phys..
[4] Eric Sonnendrücker,et al. Analysis of a new class of forward semi-Lagrangian schemes for the 1D Vlasov Poisson equations , 2011, Numerische Mathematik.
[5] Y. C. Zhou,et al. A windowed Fourier pseudospectral method for hyperbolic conservation laws , 2006, J. Comput. Phys..
[6] Jeffrey A. F. Hittinger,et al. Block-structured adaptive mesh refinement algorithms for Vlasov simulation , 2011, J. Comput. Phys..
[7] Robert I. McLachlan,et al. On the Numerical Integration of Ordinary Differential Equations by Symmetric Composition Methods , 1995, SIAM J. Sci. Comput..
[8] E. Hairer,et al. Solving ordinary differential equations I (2nd revised. ed.): nonstiff problems , 1993 .
[9] Hideo Sugama,et al. A Nondissipative Simulation Method for the Drift Kinetic Equation , 2001 .
[10] Alexander Kurganov,et al. The Order of Accuracy of Quadrature Formulae for Periodic Functions , 2009 .
[11] David C. Seal,et al. A positivity-preserving high-order semi-Lagrangian discontinuous Galerkin scheme for the Vlasov-Poisson equations , 2010, J. Comput. Phys..
[12] Creutz,et al. Higher-order hybrid Monte Carlo algorithms. , 1989, Physical review letters.
[13] Yingda Cheng,et al. Energy-conserving discontinuous Galerkin methods for the Vlasov-Ampère system , 2013, J. Comput. Phys..
[14] H. Yoshida. Construction of higher order symplectic integrators , 1990 .
[15] R. Ruth,et al. Fourth-order symplectic integration , 1990 .
[16] Daniel J. Koch,et al. An efficient scheme for convection-dominated transport , 1989 .
[17] G. Knorr,et al. The integration of the vlasov equation in configuration space , 1976 .
[18] P. Lax,et al. Systems of conservation laws , 1960 .
[19] Roy W. Gould,et al. PLASMA WAVE ECHO. , 1967 .
[20] C. Villani,et al. On Landau damping , 2009, 0904.2760.
[21] M. Suzuki,et al. Fractal decomposition of exponential operators with applications to many-body theories and Monte Carlo simulations , 1990 .
[22] T. N. Stevenson,et al. Fluid Mechanics , 2021, Nature.
[23] M. Kruskal,et al. Exact Nonlinear Plasma Oscillations , 1957 .
[24] Jack Schaeffer. Higher Order Time Splitting for the Linear Vlasov Equation , 2009, SIAM J. Numer. Anal..
[25] Eric R. Keiter,et al. A computational investigation of the effects of varying discharge geometry for an inductively coupled plasma , 2000 .
[26] Andrew Christlieb,et al. Integral and Lagrangian simulations of particle and radiation transport in plasma , 2009 .
[27] T. Simko,et al. Ion transport simulation in a low-pressure hydrogen gas at high electric fields by a convective-scheme method , 1994 .
[28] H. Sugama,et al. Vlasov and Drift Kinetic Simulation Methods Based on the Symplectic Integrator , 2005 .
[29] P. Bertrand,et al. Conservative numerical schemes for the Vlasov equation , 2001 .
[30] Andrew J. Christlieb,et al. A conservative high order semi-Lagrangian WENO method for the Vlasov equation , 2010, J. Comput. Phys..
[31] R. W. Motley,et al. LANDAU DAMPING OF ION ACOUSTIC WAVES IN HIGHLY IONIZED PLASMAS , 1964 .
[32] G. Strang. On the Construction and Comparison of Difference Schemes , 1968 .
[33] Stefano Markidis,et al. The energy conserving particle-in-cell method , 2011, J. Comput. Phys..
[34] Wei Guo,et al. Hybrid semi-Lagrangian finite element-finite difference methods for the Vlasov equation , 2013, J. Comput. Phys..
[35] T. Arber,et al. A Critical Comparison of Eulerian-Grid-Based Vlasov Solvers , 2002 .
[36] Alexander J. Klimas,et al. A method for overcoming the velocity space filamentation problem in collisionless plasma model solutions , 1987 .
[37] Fernando Casas,et al. Splitting and composition methods in the numerical integration of differential equations , 2008, 0812.0377.
[38] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[39] James E. Lawler,et al. Accurate models of collisions in glow discharge simulations , 1994 .
[40] Yaman Güçlü,et al. A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows , 2012, J. Comput. Phys..
[41] Nicolas Crouseilles,et al. High order Runge-Kutta-Nystrom splitting methods for the Vlasov-Poisson equation , 2011 .
[42] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[43] Phillip Colella,et al. An Adaptive, High-Order Phase-Space Remapping for the Two Dimensional Vlasov-Poisson Equations , 2012, SIAM J. Sci. Comput..
[44] J W Banks,et al. A New Class of Nonlinear Finite-Volume Methods for Vlasov Simulation , 2009, IEEE Transactions on Plasma Science.
[45] Yasushi Matsunaga,et al. Kinetic simulation on ion acoustic wave in gas discharge plasma with convective scheme , 2000 .
[46] William Nicholas Guy Hitchon,et al. Self-consistent kinetic model of an entire dc discharge , 1993 .
[47] Luis Chacón,et al. An energy- and charge-conserving, implicit, electrostatic particle-in-cell algorithm , 2011, J. Comput. Phys..
[48] Stefano Markidis,et al. A Multi Level Multi Domain Method for Particle In Cell plasma simulations , 2012, J. Comput. Phys..
[49] C. Cavazzoni,et al. A Numerical Scheme for the Integration of the Vlasov-Maxwell System of Equations , 2002 .
[50] Fernando Casas,et al. Symplectic Integration with Processing: A General Study , 1999, SIAM J. Sci. Comput..
[51] William Nicholas Guy Hitchon,et al. Self-consistent kinetic simulation of plasmas , 2000 .
[52] C. B. Wharton,et al. COLLISIONLESS DAMPING OF ELECTROSTATIC PLASMA WAVES , 1964 .
[53] Eric Sonnendrücker,et al. Vlasov simulations on an adaptive phase-space grid , 2004, Comput. Phys. Commun..
[54] Eric Sonnendrücker,et al. Conservative semi-Lagrangian schemes for Vlasov equations , 2010, J. Comput. Phys..
[55] Magdi Shoucri,et al. Eulerian Vlasov codes , 2005, Comput. Phys. Commun..
[56] Nicolas Besse,et al. Semi-Lagrangian schemes for the Vlasov equation on an unstructured mesh of phase space , 2003 .
[57] W. Nicholas G. Hitchon. Plasma Processes for Semiconductor Fabrication , 1999 .
[58] M. Falcone,et al. Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .
[59] J. M. Sanz-Serna,et al. Partitioned Runge-Kutta methods for separable Hamiltonian problems , 1993 .
[60] T. Yabe,et al. Cubic interpolated propagation scheme for solving the hyper-dimensional Vlasov-Poisson equation in phase space , 1999 .
[61] Fernando Casas,et al. On the Numerical Integration of Ordinary Differential Equations by Processed Methods , 2004, SIAM J. Numer. Anal..
[62] Lev Davidovich Landau,et al. On the vibrations of the electronic plasma , 1946 .
[63] D. C. Barnes,et al. A charge- and energy-conserving implicit, electrostatic particle-in-cell algorithm on mapped computational meshes , 2013, J. Comput. Phys..
[64] R W Hockney,et al. Computer Simulation Using Particles , 1966 .
[65] S. Blanes,et al. Practical symplectic partitioned Runge--Kutta and Runge--Kutta--Nyström methods , 2002 .
[66] E. Sonnendrücker,et al. The Semi-Lagrangian Method for the Numerical Resolution of the Vlasov Equation , 1999 .
[67] Luis Chacón,et al. Fluid preconditioning for Newton-Krylov-based, fully implicit, electrostatic particle-in-cell simulations , 2013, J. Comput. Phys..
[68] A. Klimas,et al. A splitting algorithm for Vlasov simulation with filamentation filtration , 1994 .
[69] J. Butcher. The effective order of Runge-Kutta methods , 1969 .
[70] C. Birdsall,et al. Plasma Physics via Computer Simulation , 2018 .
[71] E. Sonnendrücker,et al. Comparison of Eulerian Vlasov solvers , 2003 .
[72] Robert I. McLachlan. Families of High-Order Composition Methods , 2004, Numerical Algorithms.