Dispersion interactions and reactive collisions of ultracold polar molecules

Progress in ultracold experiments with polar molecules requires a clear understanding of their interactions and reactivity at ultralow collisional energies. Two important theoretical steps in this process are the characterization of interaction potentials between molecules and the modeling of the reactive scattering mechanism. Here, we report on the ab initio calculation of isotropic and anisotropic van der Waals interaction potentials for polar KRb and RbCs colliding with each other or with ultracold atoms. Based on these potentials and two short-range scattering parameters, we then develop a single-channel scattering model with flexible boundary conditions. Our calculations show that, at low temperatures (and in the absence of an external electric field), the reaction rates between molecules or between molecules and atoms have a resonant character as a function of the short-range parameters. We also find that both the isotropic and anisotropic van der Waals coefficients have significant contributions from dipole coupling to excited electronic states. Their values can differ dramatically from those solely obtained from the permanent dipole moment. A comparison with recently obtained reaction rates of fermionic 40K87Rb shows that the experimental data cannot be explained by a model where the short-range scattering parameters are independent of the relative orbital angular momentum or partial wave.

[1]  D. S. Jin,et al.  Quantum-State Controlled Chemical Reactions of Ultracold Potassium-Rubidium Molecules , 2009, Science.

[2]  R. Krems,et al.  Cold molecules: theory, experiment, applications , 2009 .

[3]  B. Gao Analytic description of atomic interaction at ultracold temperatures: The case of a single channel , 2009, 0905.1492.

[4]  P. Julienne,et al.  Multi-channel modelling of the formation of vibrationally cold polar KRb molecules , 2009, 0901.1486.

[5]  R. Grimm,et al.  Observation of interspecies Feshbach resonances in an ultracold Rb-Cs mixture , 2008, 0812.3287.

[6]  J. Ye,et al.  Ultracold polar molecules near quantum degeneracy. , 2008, Faraday discussions.

[7]  J. Ye,et al.  A High Phase-Space-Density Gas of Polar Molecules , 2008, Science.

[8]  P. Zoller,et al.  Suppression of inelastic collisions between polar molecules with a repulsive shield. , 2008, Physical review letters.

[9]  R. Krems,et al.  Quantum theory of chemical reactions in the presence of electromagnetic fields. , 2008, The Journal of chemical physics.

[10]  R. Krems Cold controlled chemistry. , 2008, Physical chemistry chemical physics : PCCP.

[11]  D. DeMille,et al.  Inelastic collisions of ultracold heteronuclear molecules in an optical trap. , 2008, Physical review letters.

[12]  C. Wieman,et al.  Collisional stability of fermionic Feshbach molecules. , 2007, Physical review letters.

[13]  P. Zoller,et al.  Three-body interactions with cold polar molecules , 2007, cond-mat/0703688.

[14]  D. Jin,et al.  p-Wave Feshbach molecules. , 2007, Physical review letters.

[15]  P. Soldán,et al.  Molecular collisions in ultracold atomic gases , 2006, physics/0610219.

[16]  P. Zoller,et al.  Strongly correlated 2D quantum phases with cold polar molecules: controlling the shape of the interaction potential. , 2006, Physical review letters.

[17]  F. J. Aoiz,et al.  Mechanism and control of the F+H2 reaction at low and ultralow collision energies. , 2006, The Journal of chemical physics.

[18]  P. Weck,et al.  Importance of long-range interactions in chemical reactions at cold and ultracold temperatures , 2006 .

[19]  D. Blume,et al.  Dipolar Bose-Einstein condensates with dipole-dependent scattering length , 2006, cond-mat/0605315.

[20]  M. Lewenstein Polar molecules in topological order , 2006 .

[21]  M. Lukin,et al.  Quantum magnetism with multicomponent dipolar molecules in an optical lattice. , 2006, Physical review letters.

[22]  P. Zoller,et al.  A toolbox for lattice-spin models with polar molecules , 2005, quant-ph/0512222.

[23]  R. Grimm,et al.  Long-lived Feshbach molecules in a three-dimensional optical lattice. , 2005, Physical review letters.

[24]  M. Kajita,et al.  Suppression of inelastic collisions of polar 1Σ state molecules in an electrostatic field , 2005, physics/0507077.

[25]  S. Kotochigova,et al.  Ab initio relativistic calculation of the RbCs molecule. , 2005, The Journal of chemical physics.

[26]  F. J. Aoiz,et al.  How reactants polarization can be used to change and unravel chemical reactivity. , 2005, The journal of physical chemistry. A.

[27]  C. Ticknor,et al.  Long-range scattering resonances in strong-field-seeking states of polar molecules , 2005, physics/0506104.

[28]  D. DeMille,et al.  Optical production of ultracold polar molecules. , 2005, Physical review letters.

[29]  R. Krems Molecules near absolute zero and external field control of atomic and molecular dynamics , 2005, physics/0504156.

[30]  E. Bodo,et al.  Chemical reactions in the limit of zero kinetic energy: virtual states and Ramsauer minima in F + H2 → HF + H , 2004 .

[31]  Immanuel Bloch,et al.  State selective production of molecules in optical lattices. , 2004, Physical review letters.

[32]  V. Aquilanti,et al.  Quantum stereodynamics of the F + H2 → HF + H reaction by the stereodirected S-matrix approach , 2004 .

[33]  T. Hänsch,et al.  Entanglement interferometry for precision measurement of atomic scattering properties. , 2003, Physical review letters.

[34]  S. Mahulikar,et al.  Physica Scripta , 2004 .

[35]  P. Julienne,et al.  Ab initio calculation of the KRb dipole moments , 2003, cond-mat/0305215.

[36]  A. Avdeenkov,et al.  Field-linked states of ultracold polar molecules , 2003, physics/0309004.

[37]  A. Avdeenkov,et al.  Linking ultracold polar molecules. , 2002, Physical review letters.

[38]  M. Lewenstein,et al.  Ultracold Dipolar Gases – a Challenge for Experiments and Theory , 2002, cond-mat/0201100.

[39]  M. Lewenstein,et al.  Quantum phases of dipolar bosons in optical lattices. , 2001, Physical review letters.

[40]  N. Balakrishnan,et al.  Chemistry at Ultracold Temperatures , 2001 .

[41]  James F. Babb,et al.  High-precision calculations of van der Waals coefficients for heteronuclear alkali-metal dimers , 2001, physics/0102030.

[42]  B. Gao Zero-energy bound or quasibound states and their implications for diatomic systems with an asymptotic van der Waals interaction , 2000 .

[43]  S. Rolston,et al.  SPIN POLARIZATION AND QUANTUM-STATISTICAL EFFECTS IN ULTRACOLD IONIZING COLLISIONS , 1999 .

[44]  V. Aquilanti,et al.  Exact quantum stereodynamics: The steric effect for the Li+HF→LiF+H reaction , 1997 .

[45]  P. Julienne,et al.  Collisions of ultracold trapped atoms , 1989 .

[46]  Henry Margenau,et al.  Theory of intermolecular forces , 1969 .