The antibacterial and anticancer properties of zinc oxide coated iron oxide nanotextured composites.

[1]  A. Mandal,et al.  Silica-Coated Metal Oxide Nanoparticles: Magnetic and Cytotoxicity Studies , 2018, ChemistrySelect.

[2]  T. Jana,et al.  MoS2‐TiO2 Nanocomposite with Excellent Adsorption Performance and High Antibacterial Activity , 2018 .

[3]  V. Narayanan,et al.  Evaluation of photocatalytic, antimicrobial and anticancer activities of ZnO/MS (M = Zn, Cd or Pb) core/shell nanoparticles , 2017 .

[4]  L. Palmisano,et al.  Electron transfer in ZnO–Fe2O3 aqueous slurry systems and its effects on visible light photocatalytic activity , 2017 .

[5]  Kumar Rajendran,et al.  Evaluation of cytotoxicity of hematite nanoparticles in bacteria and human cell lines. , 2017, Colloids and surfaces. B, Biointerfaces.

[6]  P. Chakrabarti,et al.  Modelling of growth kinetics of Vibrio cholerae in presence of gold nanoparticles: effect of size and morphology , 2017, Scientific Reports.

[7]  K. Rajagopal,et al.  The impact of anticancer activity upon Beta vulgaris extract mediated biosynthesized silver nanoparticles (ag-NPs) against human breast (MCF-7), lung (A549) and pharynx (Hep-2) cancer cell lines. , 2017, Journal of photochemistry and photobiology. B, Biology.

[8]  Mohsen Mehdipour Ghazi,et al.  An investigation of the photocatalytic activity of nano .ALPHA.-Fe2O3/ZnO on the photodegradation of cefixime trihydrate , 2017 .

[9]  P. Chakrabarti,et al.  Photocatalytic and Antibacterial Performance of α‐Fe2O3 Nanostructures , 2017 .

[10]  G. Benelli,et al.  Biological therapeutics of Pongamia pinnata coated zinc oxide nanoparticles against clinically important pathogenic bacteria, fungi and MCF-7 breast cancer cells. , 2017, Microbial pathogenesis.

[11]  A. Mansour,et al.  Zinc oxide nanoparticles as a novel anticancer approach; in vitro and in vivo evidence , 2017, Clinical and experimental pharmacology & physiology.

[12]  Xiaoxiao Liu,et al.  Constructing Hierarchical Tectorum-like α-Fe2 O3 /PPy Nanoarrays on Carbon Cloth for Solid-State Asymmetric Supercapacitors. , 2017, Angewandte Chemie.

[13]  T. Jana,et al.  Photocatalytic and antibacterial activity of cadmium sulphide/zinc oxide nanocomposite with varied morphology. , 2016, Journal of colloid and interface science.

[14]  A. Shakeri-Zadeh,et al.  Nanotechnology in hyperthermia cancer therapy: From fundamental principles to advanced applications. , 2016, Journal of controlled release : official journal of the Controlled Release Society.

[15]  P. Chakrabarti,et al.  The antimicrobial activity of ZnO nanoparticles against Vibrio cholerae: Variation in response depends on biotype. , 2016, Nanomedicine : nanotechnology, biology, and medicine.

[16]  A. Hussain,et al.  Novel synthesis of ZnO nanoparticles and their enhanced anticancer activity: Role of ZnO as a drug carrier , 2016 .

[17]  J. López-Sánchez,et al.  Sol–Gel Synthesis and Micro-Raman Characterization of ε-Fe2O3 Micro- and Nanoparticles , 2016 .

[18]  Huajian Gao,et al.  Physical Principles of Nanoparticle Cellular Endocytosis. , 2015, ACS nano.

[19]  Rajagopalan Vijayaraghavan,et al.  Insight into the Mechanism of Antibacterial Activity of ZnO: Surface Defects Mediated Reactive Oxygen Species Even in the Dark. , 2015, Langmuir : the ACS journal of surfaces and colloids.

[20]  G. Zeng,et al.  Synthesis of magnetic graphene oxide-TiO2 and their antibacterial properties under solar irradiation , 2015 .

[21]  L. Yao,et al.  The effect of Fe2O3 and ZnO nanoparticles on cytotoxicity and glucose metabolism in lung epithelial cells , 2015, Journal of applied toxicology : JAT.

[22]  F. Tanwir,et al.  In vitro toxicity of iron oxide nanoparticle: oxidative damages on Hep G2 cells. , 2015, Experimental and toxicologic pathology : official journal of the Gesellschaft fur Toxikologische Pathologie.

[23]  P. Chakrabarti,et al.  Antibacterial effect of silver nanoparticles and the modeling of bacterial growth kinetics using a modified Gompertz model. , 2015, Biochimica et biophysica acta.

[24]  J. Vijaya,et al.  Co-Doped ZnO Nanoparticles: Structural, Morphological, Optical, Magnetic and Antibacterial Studies , 2014 .

[25]  R. Bhowmik,et al.  Structural characterization and ferromagnetic properties in Ga3+doped α-Fe2O3 system prepared by coprecipitation route and vacuum annealing , 2014 .

[26]  M. Pal,et al.  Synthesis, characterization and cytotoxicity of europium incorporated ZnO–graphene nanocomposites on human MCF7 breast cancer cells , 2014 .

[27]  S. Dwivedi,et al.  ZnO nanoparticles induced oxidative stress and apoptosis in HepG2 and MCF-7 cancer cells and their antibacterial activity. , 2014, Colloids and surfaces. B, Biointerfaces.

[28]  K. Chatterjee,et al.  Self assembled flower like CdS–ZnO nanocomposite and its photo catalytic activity , 2014 .

[29]  Adam J Friedman,et al.  Nanotechnology as a therapeutic tool to combat microbial resistance. , 2013, Advanced drug delivery reviews.

[30]  J. Musarrat,et al.  Copper Oxide Nanoparticles Induced Mitochondria Mediated Apoptosis in Human Hepatocarcinoma Cells , 2013, PloS one.

[31]  Sarika Singh,et al.  Shape-controlled hierarchical ZnO architectures: photocatalytic and antibacterial activities , 2013 .

[32]  Sarika Singh,et al.  Fe3O4 embedded ZnO nanocomposites for the removal of toxic metal ions, organic dyes and bacterial pathogens , 2013 .

[33]  Ashutosh K. Singh,et al.  Enhanced Electrical, Optical, and Magnetic Properties in Multifunctional ZnO/α-Fe2O3 Semiconductor Nanoheterostructures by Heterojunction Engineering , 2012 .

[34]  Elena P Ivanova,et al.  Natural bactericidal surfaces: mechanical rupture of Pseudomonas aeruginosa cells by cicada wings. , 2012, Small.

[35]  Juan Zhou,et al.  Controllable synthesis, magnetic properties, and enhanced photocatalytic activity of spindlelike mesoporous α-Fe(2)O(3)/ZnO core-shell heterostructures. , 2012, ACS applied materials & interfaces.

[36]  Young Jik Kwon,et al.  "Nanoantibiotics": a new paradigm for treating infectious diseases using nanomaterials in the antibiotics resistant era. , 2011, Journal of controlled release : official journal of the Controlled Release Society.

[37]  Elena P Ivanova,et al.  Do bacteria differentiate between degrees of nanoscale surface roughness? , 2011, Biotechnology journal.

[38]  K. Tománková,et al.  The targeted antibacterial and antifungal properties of magnetic nanocomposite of iron oxide and silver nanoparticles. , 2011, Biomaterials.

[39]  Jun Zhang,et al.  Synthesis and gas sensing properties of α-Fe2O3@ZnO core–shell nanospindles , 2011, Nanotechnology.

[40]  L Ploux,et al.  The interaction of cells and bacteria with surfaces structured at the nanometre scale. , 2010, Acta biomaterialia.

[41]  R. G. Richards,et al.  In Vivo Evaluation of the Effect of Intramedullary Nail Microtopography on the Development of Local Infection in Rabbits , 2010, The International journal of artificial organs.

[42]  Francois Malherbe,et al.  Escherichia coli, Pseudomonas aeruginosa, and Staphylococcus aureus Attachment Patterns on Glass Surfaces with Nanoscale Roughness , 2009, Current Microbiology.

[43]  Erik N. Taylor,et al.  Increased osteoblast density in the presence of novel calcium phosphate coated magnetic nanoparticles , 2008, Nanotechnology.

[44]  J. Rodríguez-Hernández,et al.  Tunable hierarchical assembly on polymer surfaces: combining microphase and macrophase separation in copolymer/homopolymer blends. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[45]  Aranzazu del Campo,et al.  Fabrication approaches for generating complex micro- and nanopatterns on polymeric surfaces. , 2008, Chemical reviews.

[46]  J. Collins,et al.  A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics , 2007, Cell.

[47]  James F. Schumacher,et al.  Impact of engineered surface microtopography on biofilm formation of Staphylococcus aureus , 2007, Biointerphases.

[48]  D. Leslie-Pelecky,et al.  Iron oxide nanoparticles for sustained delivery of anticancer agents. , 2005, Molecular pharmaceutics.

[49]  Joanna Verran,et al.  Retention of microbial cells in substratum surface features of micrometer and sub-micrometer dimensions. , 2005, Colloids and surfaces. B, Biointerfaces.

[50]  Dapeng Yu,et al.  Optical properties of the ZnO nanotubes synthesized via vapor phase growth , 2003 .

[51]  U. Steiner,et al.  Temperature-gradient–induced instability in polymer films , 2002 .

[52]  A. M. Saitta,et al.  High-pressure Raman spectroscopy study of wurtzite ZnO , 2002 .

[53]  E. Weinberg,et al.  Iron loading and disease surveillance. , 1999, Emerging infectious diseases.

[54]  J. Verran,et al.  Retention of Candida albicans on acrylic resin and silicone of different surface topography. , 1997, The Journal of prosthetic dentistry.

[55]  D. Bagchi,et al.  Oxidative mechanisms in the toxicity of metal ions. , 1995, Free radical biology & medicine.

[56]  J. Holah,et al.  Cleanability in relation to bacterial retention on unused and abraded domestic sink materials. , 1990, The Journal of applied bacteriology.

[57]  Howard Wang,et al.  A Morphology Map Based on Phase Evolution in Polymer Blend Films , 2006 .

[58]  D. Touati,et al.  Iron and oxidative stress in bacteria. , 2000, Archives of biochemistry and biophysics.