Using the Model-Based Residual Bootstrap to Quantify Uncertainty in Fiber Orientations From $Q$-Ball Analysis

Bootstrapping of repeated diffusion-weighted image datasets enables nonparametric quantification of the uncertainty in the inferred fiber orientation. The wild bootstrap and the residual bootstrap are model-based residual resampling methods which use a single dataset. Previously, the wild bootstrap method has been presented as an alternative to conventional bootstrapping for diffusion tensor imaging. Here we present a study of an implementation of model-based residual bootstrapping using q -ball analysis and compare the outputs with conventional bootstrapping. We show that model-based residual bootstrap q-ball generates results that closely match the output of the conventional bootstrap. Both the residual and conventional bootstrap of multifiber methods can be used to estimate the probability of different numbers of fiber populations existing in different brain tissues. Also, we have shown that these methods can be used to provide input for probabilistic tractography, avoiding existing limitations associated with data calibration and model selection.

[1]  John S. Duncan,et al.  Hemispheric asymmetries in language-related pathways: A combined functional MRI and tractography study , 2006, NeuroImage.

[2]  Kaleem Siddiqi,et al.  Full-brain Q-Ball Imaging in a Clinically Acceptable Time : Application to White Matter Fibre Tractography , .

[3]  Mark W. Woolrich,et al.  Probabilistic diffusion tractography with multiple fibre orientations: What can we gain? , 2007, NeuroImage.

[4]  Daniel C Alexander,et al.  Multiple‐Fiber Reconstruction Algorithms for Diffusion MRI , 2005, Annals of the New York Academy of Sciences.

[5]  Roland G. Henry,et al.  Comparison of bootstrap approaches for estimation of uncertainties of DTI parameters , 2006, NeuroImage.

[6]  Timothy Edward John Behrens,et al.  Characterization and propagation of uncertainty in diffusion‐weighted MR imaging , 2003, Magnetic resonance in medicine.

[7]  D. Altman,et al.  STATISTICAL METHODS FOR ASSESSING AGREEMENT BETWEEN TWO METHODS OF CLINICAL MEASUREMENT , 1986, The Lancet.

[8]  R. Deriche,et al.  Regularized, fast, and robust analytical Q‐ball imaging , 2007, Magnetic resonance in medicine.

[9]  Daniel C Alexander,et al.  Probabilistic anatomical connectivity derived from the microscopic persistent angular structure of cerebral tissue , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[10]  Geoffrey J M Parker,et al.  A framework for a streamline‐based probabilistic index of connectivity (PICo) using a structural interpretation of MRI diffusion measurements , 2003, Journal of magnetic resonance imaging : JMRI.

[11]  Guy B. Williams,et al.  Inference of multiple fiber orientations in high angular resolution diffusion imaging , 2005, Magnetic resonance in medicine.

[12]  Daniel C. Alexander,et al.  Persistent Angular Structure: New Insights from Diffusion MRI Data. Dummy Version , 2003, IPMI.

[13]  Gjm Parker,et al.  A Combined Distortion Corrected Protocol for Diffusion Weighted Tractography and fMRI , 2006 .

[14]  D. Tuch Q‐ball imaging , 2004, Magnetic resonance in medicine.

[15]  Kalvis M. Jansons,et al.  Persistent angular structure: new insights from diffusion magnetic resonance imaging data , 2003 .

[16]  Daniel C. Alexander,et al.  Camino: Open-Source Diffusion-MRI Reconstruction and Processing , 2006 .

[17]  Duan Xu,et al.  Q‐ball reconstruction of multimodal fiber orientations using the spherical harmonic basis , 2006, Magnetic resonance in medicine.

[18]  Derek K. Jones,et al.  Just how much data need to be collected for reliable bootstrap DT‐MRI? , 2006, Magnetic resonance in medicine.

[19]  Philip A. Cook,et al.  Modelling noise-induced fibre-orientation error in diffusion-tensor MRI , 2004, 2004 2nd IEEE International Symposium on Biomedical Imaging: Nano to Macro (IEEE Cat No. 04EX821).

[20]  Carlo Pierpaoli,et al.  PASTA: Pointwise assessment of streamline tractography attributes , 2005, Magnetic resonance in medicine.

[21]  C. Rorden,et al.  Stereotaxic display of brain lesions. , 2000, Behavioural neurology.

[22]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[23]  S. Arridge,et al.  Detection and modeling of non‐Gaussian apparent diffusion coefficient profiles in human brain data , 2002, Magnetic resonance in medicine.

[24]  Roland G. Henry,et al.  Probabilistic streamline q-ball tractography using the residual bootstrap , 2008, NeuroImage.

[25]  Jean-Francois Mangin,et al.  Fiber Tracking in q-Ball Fields Using Regularized Particle Trajectories , 2005, IPMI.

[26]  Daniel C. Alexander,et al.  Probabilistic Monte Carlo Based Mapping of Cerebral Connections Utilising Whole-Brain Crossing Fibre Information , 2003, IPMI.

[27]  L Fahrmeir,et al.  Assessing DTI data quality using bootstrap analysis , 2004, Magnetic resonance in medicine.

[28]  V. Wedeen,et al.  Diffusion MRI of Complex Neural Architecture , 2003, Neuron.

[29]  Michael Brady,et al.  Improved Optimization for the Robust and Accurate Linear Registration and Motion Correction of Brain Images , 2002, NeuroImage.

[30]  Brandon Whitcher,et al.  Using the wild bootstrap to quantify uncertainty in diffusion tensor imaging , 2008, Human brain mapping.

[31]  Andrew L. Alexander,et al.  Bootstrap white matter tractography (BOOT-TRAC) , 2005, NeuroImage.

[32]  Stephen M. Smith,et al.  A global optimisation method for robust affine registration of brain images , 2001, Medical Image Anal..

[33]  J. S. Duncan,et al.  MR tractography predicts visual field defects following temporal lobe resection , 2005, Neurology.

[34]  D. K. Jones Tractography Gone Wild : Probabilistic Tracking Using the Wild Bootstrap , 2005 .

[35]  Carlo Pierpaoli,et al.  Confidence mapping in diffusion tensor magnetic resonance imaging tractography using a bootstrap approach , 2005, Magnetic resonance in medicine.

[36]  Alan Connelly,et al.  Direct estimation of the fiber orientation density function from diffusion-weighted MRI data using spherical deconvolution , 2004, NeuroImage.

[37]  Karl J. Friston,et al.  Non-invasive mapping of corticofugal fibres from multiple motor areas--relevance to stroke recovery. , 2006, Brain : a journal of neurology.