Colored Non-crossing Euclidean Steiner Forest

Given a set of $k$-colored points in the plane, we consider the problem of finding $k$ trees such that each tree connects all points of one color class, no two trees cross, and the total edge length of the trees is minimized. For $k=1$, this is the well-known Euclidean Steiner tree problem. For general $k$, a $k\rho$-approximation algorithm is known, where $\rho \le 1.21$ is the Steiner ratio. We present a PTAS for $k=2$, a $(5/3+\varepsilon)$-approximation algorithm for $k=3$, and two approximation algorithms for general~$k$, with ratios $O(\sqrt n \log k)$ and $k+\varepsilon$.

[1]  Philip N. Klein,et al.  An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.

[2]  Timothy M. Chan,et al.  Minimum Length Embedding of Planar Graphs at Fixed Vertex Locations , 2013, Graph Drawing.

[3]  Alexander Wolff,et al.  Delineating Boundaries for Imprecise Regions , 2005, Algorithmica.

[4]  Joseph S. B. Mitchell,et al.  Thick non-crossing paths and minimum-cost flows in polygonal domains , 2007, SCG '07.

[5]  Yifan Hu,et al.  MapSets: Visualizing Embedded and Clustered Graphs , 2014, J. Graph Algorithms Appl..

[6]  Takao Nishizeki,et al.  Shortest noncrossing paths in plane graphs , 2005, Algorithmica.

[7]  Maarten Löffler,et al.  Existence and Computation of Tours through Imprecise Points , 2011, Int. J. Comput. Geom. Appl..

[8]  M. Sheelagh T. Carpendale,et al.  Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.

[9]  Thomas M. Liebling,et al.  Disjoint Paths in the Plane , 1995, INFORMS J. Comput..

[10]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.

[11]  Amir Nayyeri,et al.  Shortest non-crossing walks in the plane , 2011, SODA '11.

[12]  Evanthia Papadopoulou,et al.  k-Pairs Non-Crossing Shortest Paths in a Simple Polygon , 1996, Int. J. Comput. Geom. Appl..

[13]  Ronald L. Graham,et al.  A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL TREES , 1985 .

[14]  Stephen G. Kobourov,et al.  Computing homotopic shortest paths efficiently , 2006, Comput. Geom..

[15]  Kevin Verbeek Homotopic C-oriented routing , 2013 .

[16]  Joseph S. B. Mitchell,et al.  Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.

[17]  Joseph S. B. Mitchell,et al.  Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..

[18]  Matthias Müller-Hannemann,et al.  A near linear time approximation scheme for Steiner tree among obstacles in the plane , 2010, Comput. Geom..

[19]  Joseph S. B. Mitchell,et al.  Touring Convex Bodies - A Conic Programming Solution , 2005, CCCG.

[20]  Mina Razaghpour,et al.  The Steiner Ratio for the Obstacle-Avoiding Steiner Tree Problem , 2008 .

[21]  Sergei N. Bespamyatnikh Computing homotopic shortest paths in the plane , 2003, SODA '03.

[22]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[23]  Takao Nishizeki,et al.  Finding a Noncrossing Steiner Forest in Plane Graphs Under a 2-Face Condition , 2001, J. Comb. Optim..

[24]  Mary Czerwinski,et al.  Design Study of LineSets, a Novel Set Visualization Technique , 2011, IEEE Transactions on Visualization and Computer Graphics.