Colored Non-crossing Euclidean Steiner Forest
暂无分享,去创建一个
Alexander Wolff | Sergey Bereg | Philipp Kindermann | Joachim Spoerhase | Sergey Pupyrev | Krzysztof Fleszar | P. Kindermann | A. Wolff | Krzysztof Fleszar | S. Pupyrev | S. Bereg | J. Spoerhase
[1] Philip N. Klein,et al. An O(n log n) approximation scheme for Steiner tree in planar graphs , 2009, TALG.
[2] Timothy M. Chan,et al. Minimum Length Embedding of Planar Graphs at Fixed Vertex Locations , 2013, Graph Drawing.
[3] Alexander Wolff,et al. Delineating Boundaries for Imprecise Regions , 2005, Algorithmica.
[4] Joseph S. B. Mitchell,et al. Thick non-crossing paths and minimum-cost flows in polygonal domains , 2007, SCG '07.
[5] Yifan Hu,et al. MapSets: Visualizing Embedded and Clustered Graphs , 2014, J. Graph Algorithms Appl..
[6] Takao Nishizeki,et al. Shortest noncrossing paths in plane graphs , 2005, Algorithmica.
[7] Maarten Löffler,et al. Existence and Computation of Tours through Imprecise Points , 2011, Int. J. Comput. Geom. Appl..
[8] M. Sheelagh T. Carpendale,et al. Bubble Sets: Revealing Set Relations with Isocontours over Existing Visualizations , 2009, IEEE Transactions on Visualization and Computer Graphics.
[9] Thomas M. Liebling,et al. Disjoint Paths in the Plane , 1995, INFORMS J. Comput..
[10] Sanjeev Arora,et al. Polynomial time approximation schemes for Euclidean traveling salesman and other geometric problems , 1998, JACM.
[11] Amir Nayyeri,et al. Shortest non-crossing walks in the plane , 2011, SODA '11.
[12] Evanthia Papadopoulou,et al. k-Pairs Non-Crossing Shortest Paths in a Simple Polygon , 1996, Int. J. Comput. Geom. Appl..
[13] Ronald L. Graham,et al. A NEW BOUND FOR EUCLIDEAN STEINER MINIMAL TREES , 1985 .
[14] Stephen G. Kobourov,et al. Computing homotopic shortest paths efficiently , 2006, Comput. Geom..
[15] Kevin Verbeek. Homotopic C-oriented routing , 2013 .
[16] Joseph S. B. Mitchell,et al. Geometric Shortest Paths and Network Optimization , 2000, Handbook of Computational Geometry.
[17] Joseph S. B. Mitchell,et al. Guillotine Subdivisions Approximate Polygonal Subdivisions: A Simple Polynomial-Time Approximation Scheme for Geometric TSP, k-MST, and Related Problems , 1999, SIAM J. Comput..
[18] Matthias Müller-Hannemann,et al. A near linear time approximation scheme for Steiner tree among obstacles in the plane , 2010, Comput. Geom..
[19] Joseph S. B. Mitchell,et al. Touring Convex Bodies - A Conic Programming Solution , 2005, CCCG.
[20] Mina Razaghpour,et al. The Steiner Ratio for the Obstacle-Avoiding Steiner Tree Problem , 2008 .
[21] Sergei N. Bespamyatnikh. Computing homotopic shortest paths in the plane , 2003, SODA '03.
[22] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[23] Takao Nishizeki,et al. Finding a Noncrossing Steiner Forest in Plane Graphs Under a 2-Face Condition , 2001, J. Comb. Optim..
[24] Mary Czerwinski,et al. Design Study of LineSets, a Novel Set Visualization Technique , 2011, IEEE Transactions on Visualization and Computer Graphics.