Block triangular preconditioners for the discretized time-harmonic Maxwell equations in mixed form

[1]  Z. Cao Positive stable block triangular preconditioners for symmetric saddle point problems , 2007 .

[2]  Jia Liu,et al.  Block preconditioning for saddle point systems with indefinite (1, 1) block , 2007, Int. J. Comput. Math..

[3]  Chen Greif,et al.  Preconditioners for the discretized time-harmonic Maxwell equations in mixed form , 2007, Numer. Linear Algebra Appl..

[4]  D. Schötzau,et al.  Preconditioners for saddle point linear systems with highly singular blocks. , 2006 .

[5]  Valeria Simoncini,et al.  Block triangular preconditioners for symmetric saddle-point problems , 2004 .

[6]  Joseph E. Pasciak,et al.  Analysis of a Multigrid Algorithm for Time Harmonic Maxwell Equations , 2004, SIAM J. Numer. Anal..

[7]  Jun Zou,et al.  Substructuring preconditioners for saddle-point problems arising from Maxwell's equations in three dimensions , 2004, Math. Comput..

[8]  D. Schötzau,et al.  Stabilized interior penalty methods for the time-harmonic Maxwell equations , 2002 .

[9]  Gene H. Golub,et al.  SOR-like Methods for Augmented Systems , 2001 .

[10]  Zhiming Chen,et al.  Finite Element Methods with Matching and Nonmatching Meshes for Maxwell Equations with Discontinuous Coefficients , 2000, SIAM J. Numer. Anal..

[11]  Gene H. Golub,et al.  A Note on Preconditioning for Indefinite Linear Systems , 1999, SIAM J. Sci. Comput..

[12]  Axel Klawonn,et al.  Block-Triangular Preconditioners for Saddle Point Problems with a Penalty Term , 1998, SIAM J. Sci. Comput..

[13]  A. Wathen,et al.  Fast iterative solution of stabilised Stokes systems part II: using general block preconditioners , 1994 .

[14]  Andrew J. Wathen,et al.  Fast iterative solution of stabilised Stokes systems, part I: using simple diagonal preconditioners , 1993 .

[15]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .