Digital Advertising: An Information Scientist's Perspective

Digital online advertising is a form of promotion that uses the Internet and Web for the express purpose of delivering marketing messages to attract customers. Examples of online advertising include text ads that appear on search engine results pages, banner ads, in-text ads, or Rich Media ads that appear on regular web pages, portals, or applications. Over the past 15 years online advertising, a $65 billion industry worldwide in 2009, has been pivotal to the success of the Web. That being said, the field of advertising has been equally revolutionized by the Internet, Web, and more recently, by the emergence of the social web, and mobile devices. This success has arisen largely from the transformation of the advertising industry from a low-tech, human intensive, “Mad Men” way of doing work to highly optimized, quantitative, mathematical, computer- and data-centric processes that enable highly targeted, personalized, performance-based advertising. This chapter provides a clear and detailed overview of the technologies and business models that are transforming the field of online advertising primarily from statistical machine learning and information science perspectives.

[1]  John Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[2]  Lina Zhou,et al.  ONLINE SHOPPING ACCEPTANCE MODEL — A CRITICAL SURVEY OF CONSUMER FACTORS IN ONLINE SHOPPING , 2007 .

[3]  Weiguo Fan,et al.  Learning to advertise , 2006, SIGIR.

[4]  Gerard Salton,et al.  The SMART Retrieval System , 1971 .

[5]  Wei Chu,et al.  An Unbiased, Data-Driven, Offline Evaluation Method of Contextual Bandit Algorithms , 2010, ArXiv.

[6]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[7]  Matthew Richardson,et al.  Predicting clicks: estimating the click-through rate for new ads , 2007, WWW '07.

[8]  Rich Caruana,et al.  Predicting good probabilities with supervised learning , 2005, ICML.

[9]  Slava M. Katz,et al.  Estimation of probabilities from sparse data for the language model component of a speech recognizer , 1987, IEEE Trans. Acoust. Speech Signal Process..

[10]  Olivier Chapelle,et al.  Expected reciprocal rank for graded relevance , 2009, CIKM.

[11]  Ben Carterette,et al.  Low cost evaluation in information retrieval , 2010, SIGIR '10.

[12]  Chris Volinsky,et al.  Network-Based Marketing: Identifying Likely Adopters Via Consumer Networks , 2006, math/0606278.

[13]  Gábor Lugosi,et al.  Prediction, learning, and games , 2006 .

[14]  F. T. Wright,et al.  Order restricted statistical inference , 1988 .

[15]  Chun Chen,et al.  Advertising keyword generation using active learning , 2009, WWW '09.

[16]  Aneta Francová,et al.  Language of Advertising , 2008 .

[17]  Andrei Z. Broder,et al.  Just-in-time contextual advertising , 2007, CIKM '07.

[18]  Mohammad Suyanto Electronic commerce (EC) , 2010 .

[19]  Thorsten Joachims,et al.  Optimizing search engines using clickthrough data , 2002, KDD.

[20]  W. Härdle Robertson, T., WrighT, F.T. and R.L. Dykstra: Order restricted statistical inference , 1989 .

[21]  Andrei Z. Broder,et al.  Efficient query evaluation using a two-level retrieval process , 2003, CIKM '03.

[22]  Peter Auer,et al.  Finite-time Analysis of the Multiarmed Bandit Problem , 2002, Machine Learning.

[23]  Andrei Z. Broder,et al.  A semantic approach to contextual advertising , 2007, SIGIR.

[24]  LiYing,et al.  Data mining and audience intelligence for advertising , 2007 .

[25]  William R. Hersh,et al.  Managing Gigabytes—Compressing and Indexing Documents and Images (Second Edition) , 2001, Information Retrieval.

[26]  T. L. Lai Andherbertrobbins Asymptotically Efficient Adaptive Allocation Rules , 2022 .

[27]  Christopher D. Manning,et al.  Introduction to Information Retrieval , 2010, J. Assoc. Inf. Sci. Technol..

[28]  Bianca Zadrozny,et al.  Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers , 2001, ICML.

[29]  Dou Shen,et al.  Proceedings of the Third International Workshop on Data Mining and Audience Intelligence for Advertising , 2007, KDD 2007.

[30]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[31]  Wen Zhang,et al.  How much can behavioral targeting help online advertising? , 2009, WWW '09.

[32]  Filip Radlinski,et al.  Search Engines that Learn from Implicit Feedback , 2007, Computer.

[33]  Andrei Z. Broder,et al.  To swing or not to swing: learning when (not) to advertise , 2008, CIKM '08.

[34]  Joshua Goodman,et al.  Finding advertising keywords on web pages , 2006, WWW '06.

[35]  Andrei Z. Broder,et al.  Robust classification of rare queries using web knowledge , 2007, SIGIR.

[36]  S. Cherry Nothing But Net , 2007, IEEE Spectrum.

[37]  Deepak Agarwal,et al.  fLDA: matrix factorization through latent dirichlet allocation , 2010, WSDM '10.

[38]  Berthier A. Ribeiro-Neto,et al.  Impedance coupling in content-targeted advertising , 2005, SIGIR '05.

[39]  W. Bruce Croft,et al.  Search Engines - Information Retrieval in Practice , 2009 .

[40]  B. Dervin,et al.  Information needs and uses. , 1986 .

[41]  Jinbo Bi,et al.  Active learning via transductive experimental design , 2006, ICML.

[42]  Man Lung Yiu,et al.  Group-by skyline query processing in relational engines , 2009, CIKM.

[43]  Vassilis Plachouras,et al.  A noisy-channel approach to contextual advertising , 2007, ADKDD '07.

[44]  Joshua Goodman,et al.  Implicit Queries for Email , 2005, CEAS.

[45]  Vassilis Plachouras,et al.  Online learning from click data for sponsored search , 2008, WWW.

[46]  Sean R Eddy,et al.  What is dynamic programming? , 2004, Nature Biotechnology.

[47]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[48]  Aron M. Levin,et al.  A MULTI-ATTRIBUTE ANALYSIS OF PREFERENCES FOR ONLINE AND OFFLINE SHOPPING: DIFFERENCES ACROSS PRODUCTS, CONSUMERS, AND SHOPPING STAGES , 2005 .

[49]  Tie-Yan Liu,et al.  Learning to rank: from pairwise approach to listwise approach , 2007, ICML '07.

[50]  Andrei Z. Broder,et al.  Automatic generation of bid phrases for online advertising , 2010, WSDM '10.

[51]  John F. Canny,et al.  Large-scale behavioral targeting , 2009, KDD.

[52]  D. Ogilvy Ogilvy on Advertising , 1983 .

[53]  Bee-Chung Chen,et al.  Explore/Exploit Schemes for Web Content Optimization , 2009, 2009 Ninth IEEE International Conference on Data Mining.

[54]  Daniel T. Larose,et al.  Discovering Knowledge in Data: An Introduction to Data Mining , 2005 .

[55]  Leonid Zhukov,et al.  Clustering of bipartite advertiser-keyword graph , 2003 .

[56]  B Freydberg Nothing but net? , 1997, Journal of the California Dental Association.

[57]  Ian H. Witten,et al.  Managing gigabytes (2nd ed.): compressing and indexing documents and images , 1999 .

[58]  Deepayan Chakrabarti,et al.  Bandits for Taxonomies: A Model-based Approach , 2007, SDM.

[59]  Sergey Brin,et al.  The Anatomy of a Large-Scale Hypertextual Web Search Engine , 1998, Comput. Networks.

[60]  Andrei Z. Broder,et al.  A search-based method for forecasting ad impression in contextual advertising , 2009, WWW '09.

[61]  Jaana Kekäläinen,et al.  Cumulated gain-based evaluation of IR techniques , 2002, TOIS.

[62]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[63]  Ian H. Witten,et al.  Managing Gigabytes: Compressing and Indexing Documents and Images , 1999 .

[64]  Daniel C. Fain,et al.  Predicting Click-Through Rate Using Keyword Clusters , 2006 .