A real-time algorithm for mobile robot mapping with applications to multi-robot and 3D mapping

We present an incremental method for concurrent mapping and localization for mobile robots equipped with 2D laser range finders. The approach uses a fast implementation of scan-matching for mapping, paired with a sample-based probabilistic method for localization. Compact 3D maps are generated using a multi-resolution approach adopted from the computer graphics literature, fed by data from a dual laser system. Our approach builds 3D maps of large, cyclic environments in real-time, and it is robust. Experimental results illustrate that accurate maps of large, cyclic environments can be generated even in the absence of any odometric data.

[1]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[2]  Wolfram Burgard,et al.  Using the CONDENSATION algorithm for robust, vision-based mobile robot localization , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[3]  Andrew L. Rukhin,et al.  Tools for statistical inference , 1991 .

[4]  Evangelos E. Milios,et al.  Robot Pose Estimation in Unknown Environments by Matching 2D Range Scans , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[5]  M. Pitt,et al.  Filtering via Simulation: Auxiliary Particle Filters , 1999 .

[6]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1992 .

[7]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, Proceedings Visualization '98 (Cat. No.98CB36276).

[8]  Randall D. Beer,et al.  Spatial learning for navigation in dynamic environments , 1996, IEEE Trans. Syst. Man Cybern. Part B.

[9]  Wolfgang D. Rencken,et al.  Concurrent localisation and map building for mobile robots using ultrasonic sensors , 1993, Proceedings of 1993 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS '93).

[10]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, IEEE Visualization.

[11]  Man Ieee Systems,et al.  IEEE transactions on systems, man and cybernetics. Part B, Cybernetics , 1996 .

[12]  Wolfram Burgard,et al.  Monte Carlo Localization: Efficient Position Estimation for Mobile Robots , 1999, AAAI/IAAI.

[13]  Leslie Pack Kaelbling,et al.  Learning models for robot navigation , 1999 .

[14]  J.-S. Gutmann,et al.  AMOS: comparison of scan matching approaches for self-localization in indoor environments , 1996, Proceedings of the First Euromicro Workshop on Advanced Mobile Robots (EUROBOT '96).

[15]  D. Rubin Using the SIR algorithm to simulate posterior distributions , 1988 .

[16]  Ingemar J. Cox,et al.  Dynamic Map Building for an Autonomous Mobile Robot , 1990, EEE International Workshop on Intelligent Robots and Systems, Towards a New Frontier of Applications.

[17]  Liqiang Feng,et al.  Navigating Mobile Robots: Systems and Techniques , 1996 .

[18]  Wolfram Burgard,et al.  A Probabilistic Approach to Concurrent Mapping and Localization for Mobile Robots , 1998, Auton. Robots.

[19]  Hans P. Moravec,et al.  High resolution maps from wide angle sonar , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[20]  Pat Langley,et al.  MAGELLAN: An Integrated Adaptive Architecture for Mobile Robotics , 1998 .

[21]  Reid G. Simmons,et al.  Probabilistic Robot Navigation in Partially Observable Environments , 1995, IJCAI.