Ensemble-Based Parameter Estimation in a Coupled General Circulation Model

AbstractParameter estimation provides a potentially powerful approach to reduce model bias for complex climate models. Here, in a twin experiment framework, the authors perform the first parameter estimation in a fully coupled ocean–atmosphere general circulation model using an ensemble coupled data assimilation system facilitated with parameter estimation. The authors first perform single-parameter estimation and then multiple-parameter estimation. In the case of the single-parameter estimation, the error of the parameter [solar penetration depth (SPD)] is reduced by over 90% after ~40 years of assimilation of the conventional observations of monthly sea surface temperature (SST) and salinity (SSS). The results of multiple-parameter estimation are less reliable than those of single-parameter estimation when only the monthly SST and SSS are assimilated. Assimilating additional observations of atmospheric data of temperature and wind improves the reliability of multiple-parameter estimation. The errors of ...

[1]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation for treatment of mesoscale model error: A real‐data study , 2010 .

[2]  Jeffrey L. Anderson An Ensemble Adjustment Kalman Filter for Data Assimilation , 2001 .

[3]  J. Annan,et al.  Efficient parameter estimation for a highly chaotic system , 2004 .

[4]  E. Schneider,et al.  Sensitivity of the Simulated Annual Cycle of Sea Surface Temperature in the Equatorial Pacific to Sunlight Penetration , 1998 .

[5]  Ionel M. Navon,et al.  An Optimal Nudging Data Assimilation Scheme Using Parameter Estimation , 1992 .

[6]  H. T. Banks Computational issues in parameter estimation and feedback control problems for partial differential equation systems , 1992 .

[7]  Fuqing Zhang,et al.  Ensemble-based simultaneous state and parameter estimation in a two-dimensional sea-breeze model , 2006 .

[8]  Fuqing Zhang,et al.  Ensemble‐based simultaneous state and parameter estimation with MM5 , 2006 .

[9]  James D. Annan,et al.  Parameter estimation in an intermediate complexity earth system model using an ensemble Kalman filter , 2005 .

[10]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part II: Parameter Estimation Experiments , 2008 .

[11]  Joaquim Ballabrera-Poy,et al.  Coupled Ocean–Atmosphere Response to Seasonal Modulation of Ocean Color: Impact on Interannual Climate Simulations in the Tropical Pacific , 2007 .

[12]  Chris Snyder,et al.  Ensemble Kalman Filter Assimilation of Fixed Screen-Height Observations in a Parameterized PBL , 2005 .

[13]  A. Rosati,et al.  An assessment of oceanic variability for 1960–2010 from the GFDL ensemble coupled data assimilation , 2013, Climate Dynamics.

[14]  Shaoqing Zhang,et al.  Impact of observation‐optimized model parameters on decadal predictions: Simulation with a simple pycnocline prediction model , 2011 .

[15]  Xiaosong Yang,et al.  A predictable AMO-like pattern in GFDL's fully-coupled ensemble initialization and decadal forecasting system , 2012 .

[16]  Mingjing Tong,et al.  Simultaneous Estimation of Microphysical Parameters and Atmospheric State with Simulated Radar Data and Ensemble Square Root Kalman Filter. Part I: Sensitivity Analysis and Parameter Identifiability , 2008 .

[17]  Shaoqing Zhang,et al.  Ensemble data assimilation in a simple coupled climate model: The role of ocean-atmosphere interaction , 2013, Advances in Atmospheric Sciences.

[18]  John P. Dunne,et al.  Impact of ocean color on the maintenance of the Pacific Cold Tongue , 2007 .

[19]  Ionel Michael Navon,et al.  Practical and theoretical aspects of adjoint parameter estimation and identifiability in meteorology and oceanography , 1998 .

[20]  Shaoqing Zhang,et al.  A Study of Impacts of Coupled Model Initial Shocks and State–Parameter Optimization on Climate Predictions Using a Simple Pycnocline Prediction Model , 2011 .

[21]  C. Mobley,et al.  Ocean Radiant Heating. Part I: Optical Influences , 2000 .

[22]  Z. Liu,et al.  Seasonal and Long-Term Atmospheric Responses to Reemerging North Pacific Ocean Variability: A Combined Dynamical and Statistical Assessment , 2007 .

[23]  James D. Annan,et al.  Marine geochemical data assimilation in an efficient Earth System Model of global biogeochemical cycling , 2006 .

[24]  K. Baker,et al.  The bio‐optical state of ocean waters and remote sensing 1 , 1978 .

[25]  Robert Frouin,et al.  Response of the equatorial Pacific to chlorophyll pigment in a mixed layer isopycnal ocean general circulation model , 2001 .

[26]  Jeffrey L. Anderson A Local Least Squares Framework for Ensemble Filtering , 2003 .

[27]  R. Jacob Low frequency variability in a simulated atmosphere-ocean system , 1997 .

[28]  Robert Jacob,et al.  Simulating the transient evolution and abrupt change of Northern Africa atmosphere–ocean–terrestrial ecosystem in the Holocene ☆ , 2007 .

[29]  Xinrong Wu,et al.  A study of impact of the geographic dependence of observing system on parameter estimation with an intermediate coupled model , 2013, Climate Dynamics.

[30]  Dong Eun Lee,et al.  Pacific Decadal Variability: The Tropical Pacific Mode and the North Pacific Mode* , 2003 .

[31]  Antonio J. Busalacchi,et al.  Effects of Penetrative Radiation on the Upper Tropical Ocean Circulation , 2002 .

[32]  Harvey Thomas Banks,et al.  Control and Estimation in Distributed Parameter Systems , 1992 .

[33]  Julia C. Hargreaves,et al.  Parameter estimation in an atmospheric GCM using the Ensemble , 2005 .

[34]  A. Rosati,et al.  System Design and Evaluation of Coupled Ensemble Data Assimilation for Global Oceanic Climate Studies , 2007 .

[35]  S. Cohn,et al.  Ooce Note Series on Global Modeling and Data Assimilation Construction of Correlation Functions in Two and Three Dimensions and Convolution Covariance Functions , 2022 .

[36]  Xinrong Wu,et al.  Impact of Geographic-Dependent Parameter Optimization on Climate Estimation and Prediction: Simulation with an Intermediate Coupled Model , 2012 .

[37]  T. Delworth,et al.  A study of enhancive parameter correction with coupled data assimilation for climate estimation and prediction using a simple coupled model , 2012 .

[38]  John E. Kutzbach,et al.  Modeling climate shift of El Nino variability in the Holocene , 2000 .

[39]  Robert Jacob,et al.  Ensemble-Based Parameter Estimation in a Coupled GCM Using the Adaptive Spatial Average Method , 2014 .

[40]  Fuqing Zhang,et al.  Evaluation of Planetary Boundary Layer Scheme Sensitivities for the Purpose of Parameter Estimation , 2010 .

[41]  Y. Wanga,et al.  Simulating the transient evolution and abrupt change of Northern Africa atmosphere – ocean – terrestrial ecosystem in the Holocene $ , 2007 .

[42]  Jialin Lin,et al.  The Double-ITCZ Problem in IPCC AR4 Coupled GCMs: Ocean–Atmosphere Feedback Analysis , 2007 .

[43]  Robert Frouin,et al.  A simple analytical formula to compute clear sky total and photosynthetically available solar irradiance at the ocean surface , 1989 .

[44]  J. Kutzbach,et al.  Coupled climate simulation of the evolution of global monsoons in the Holocene , 2003 .

[45]  Shaoqing Zhang,et al.  Balanced and Coherent Climate Estimation by Combining Data with a Biased Coupled Model , 2014 .