High efficiency 2×2 cavity-backed slot sub-array for 60 GHz planar array antenna based on gap technology

This paper presents a two layer 2×2-slot element as a sub-array for 60 GHz planar array antenna based on gap waveguide technology. The proposed element consists of 2×2 slots in a gap waveguide cavity where the cavity is fed through a coupling slot from a ridge gap waveguide corporate-feed network in a lower layer. The 2×2-slot sub-array is numerically optimized in an infinite array environment. The designed sub-array shows the relative bandwidth of 11% with reflection coefficient better than ™13 dB over 58.2-65 GHz frequency band. A prototype of a 8×8-element slot array antenna is designed and fabricated in order to verify the simulations.

[1]  Yong Fan,et al.  A Wideband High-Gain High-Efficiency Hybrid Integrated Plate Array Antenna for V-Band Inter-Satellite Links , 2015, IEEE Transactions on Antennas and Propagation.

[2]  Per-Simon Kildal,et al.  2$\times$ 2-Slot Element for 60-GHz Planar Array Antenna Realized on Two Doubled-Sided PCBs Using SIW Cavity and EBG-Type Soft Surface fed by Microstrip-Ridge Gap Waveguide , 2014, IEEE Transactions on Antennas and Propagation.

[3]  M. Baquero,et al.  Gap Waveguides Using a Suspended Strip on a Bed of Nails , 2011, IEEE Antennas and Wireless Propagation Letters.

[4]  Eva Rajo-Iglesias,et al.  Planar Dual-Mode Horn Array With Corporate-Feed Network in Inverted Microstrip Gap Waveguide , 2014, IEEE Transactions on Antennas and Propagation.

[5]  P. Kildal,et al.  Improved Microstrip Filters Using PMC Packaging by Lid of Nails , 2012, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[6]  P.-S. Kildal,et al.  Parallel Plate Cavity Mode Suppression in Microstrip Circuit Packages Using a Lid of Nails , 2010, IEEE Microwave and Wireless Components Letters.

[7]  Ashraf Uz Zaman,et al.  Gap Waveguide PMC Packaging for Improved Isolation of Circuit Components in High-Frequency Microwave Modules , 2014, IEEE Transactions on Components, Packaging and Manufacturing Technology.

[8]  Eva Rajo-Iglesias,et al.  Groove gap waveguide: A rectangular waveguide between contactless metal plates enabled by parallel-plate cut-off , 2010, Proceedings of the Fourth European Conference on Antennas and Propagation.

[9]  Eva Rajo-Iglesias,et al.  Design and experimental verification of ridge gap waveguide in bed of nails for parallel-plate mode suppression , 2011 .

[10]  Yong-xin Guo,et al.  W-Band Large-Scale High-Gain Planar Integrated Antenna Array , 2014, IEEE Transactions on Antennas and Propagation.

[11]  E. Rajo-Iglesias,et al.  Local Metamaterial-Based Waveguides in Gaps Between Parallel Metal Plates , 2009, IEEE Antennas and Wireless Propagation Letters.

[12]  Per-Simon Kildal,et al.  Three metamaterial-based gap waveguides between parallel metal plates for mm/submm waves , 2009, 2009 3rd European Conference on Antennas and Propagation.