The influence of temperature transients on the lifetime of modern high-chromium rotor steel under service-type loading

[1]  M. Oechsner,et al.  A local extrapolation based calculation reduction method for the application of constitutive material models for creep fatigue assessment , 2012 .

[2]  Matthias Oechsner,et al.  Creep-fatigue lifetime assessment with phenomenological and constitutive material laws. –6th International Conference on Creep, Fatigue and Creep-Fatigue Interaction [CF-6], Mamallapuram, T. N., India , 2012 .

[3]  A. Pineau,et al.  Lifetime prediction of 9–12%Cr martensitic steels subjected to creep–fatigue at high temperature , 2010 .

[4]  C. Berger,et al.  Validation of a Constitutive Material Model with Anisothermal Uniaxial and Biaxial Experiments* , 2009 .

[5]  Alfred Scholz,et al.  16 – Creep fatigue behaviour and crack growth of steels , 2008 .

[6]  Shengde Zhang,et al.  Multiaxial creep–fatigue life prediction for cruciform specimen , 2007 .

[7]  Stuart Holdsworth,et al.  Development of thermal fatigue damage in 1CrMoV rotor steel , 2007 .

[8]  Christina Berger,et al.  Konstitutive Beschreibung eines 10 %Cr‐Stahls zur Berechnung betriebsnaher Kriechermüdungsbeanspruchung , 2007 .

[9]  Shenmin Zhang,et al.  Multiaxial creep-fatigue life using cruciform specimen , 2007 .

[10]  Martin Reigl,et al.  Considerations to the An-Isothermal Creep-Fatigue Assessment of Steam Turbine Rotor Steels , 2007 .

[11]  F. Colombo Service-like thermo-mechanical fatigue characteristics of 1CrMoV rotor steel , 2007 .

[12]  Andreas Simon,et al.  Service-type creep-fatigue experiments with cruciform specimens and modelling of deformation , 2006 .

[13]  Alfred Scholz,et al.  Deformation and life assessment of high temperature materials under creep fatigue loading , 2005 .

[14]  Stuart Holdsworth,et al.  Factors influencing the service-like thermomechanical fatigue test cycle endurance of 1% CrMoV rotor steel , 2003 .

[15]  K. Schneider,et al.  Creep damage behaviour of 12% Cr steel , 1991 .