Advanced Data Analysis from an Elementary Point of View

[1]  Gerhard Winkler,et al.  Image analysis, random fields and dynamic Monte Carlo methods: a mathematical introduction , 1995, Applications of mathematics.

[2]  M. Rosenzweig,et al.  Natural "Natural Experiments" in Economics , 2000 .

[3]  P. Guttorp Stochastic modeling of scientific data , 1995 .

[4]  Bernhard Schölkopf,et al.  Nonlinear causal discovery with additive noise models , 2008, NIPS.

[5]  Tom Burr,et al.  Causation, Prediction, and Search , 2003, Technometrics.

[6]  Dani Rodrik,et al.  The Real Exchange Rate and Economic Growth , 2009 .

[7]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[8]  P. Collier,et al.  Greed and Grievance in Civil War , 1999 .

[9]  A D Barbour,et al.  Chance and chaos , 1996 .

[10]  Nello Cristianini,et al.  An Introduction to Support Vector Machines and Other Kernel-based Learning Methods , 2000 .

[11]  Charles F. Manski,et al.  Identification for Prediction and Decision , 2008 .

[12]  Robert Lund,et al.  The ARMA alphabet soup: A tour of ARMA model variants , 2010 .

[13]  J. Simonoff Smoothing Methods in Statistics , 1998 .

[14]  Judea Pearl,et al.  Complete Identification Methods for the Causal Hierarchy , 2008, J. Mach. Learn. Res..

[15]  Jushan Bai,et al.  Testing Parametric Conditional Distributions of Dynamic Models , 2003, Review of Economics and Statistics.

[16]  Pierre-Henri Hugoniot,et al.  The life and work of , 2005 .

[17]  T. Richardson Single World Intervention Graphs ( SWIGs ) : A Unification of the Counterfactual and Graphical Approaches to Causality , 2013 .

[18]  Sang Joon Kim,et al.  A Mathematical Theory of Communication , 2006 .

[19]  S. Wood Stable and Efficient Multiple Smoothing Parameter Estimation for Generalized Additive Models , 2004 .

[20]  M. Kenward,et al.  An Introduction to the Bootstrap , 2007 .

[21]  D. F. Norton,et al.  A Treatise of Human Nature: Being an Attempt to Introduce the Experimental Method of Reasoning Into Moral Subjects , 2000 .

[22]  Robert M. Gray,et al.  Probability, Random Processes, And Ergodic Properties , 1987 .

[23]  J. Friedman,et al.  Estimating Optimal Transformations for Multiple Regression and Correlation. , 1985 .

[24]  P. Holmes,et al.  Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields , 1983, Applied Mathematical Sciences.

[25]  Xin-She Yang,et al.  Introduction to Algorithms , 2021, Nature-Inspired Optimization Algorithms.

[26]  Ray C. Fair,et al.  A Theory of Extramarital Affairs , 1978, Journal of Political Economy.

[27]  Christina Gloeckner,et al.  Modern Applied Statistics With S , 2003 .

[28]  R. Kass,et al.  Geometrical Foundations of Asymptotic Inference , 1997 .

[29]  Kristin M. Bakke,et al.  The perils of policy by p-value: Predicting civil conflicts , 2010 .

[30]  P. Halmos Introduction to Hilbert Space: And the Theory of Spectral Multiplicity , 1998 .

[31]  H. Künsch The Jackknife and the Bootstrap for General Stationary Observations , 1989 .

[32]  S. Wright The Method of Path Coefficients , 1934 .

[33]  Sylvain Arlot,et al.  A survey of cross-validation procedures for model selection , 2009, 0907.4728.

[34]  B. Russell The Analysis of Matter , 1927 .

[35]  Daniel Pérez Palomar,et al.  Lautum Information , 2008, IEEE Transactions on Information Theory.

[36]  O. Penrose The Direction of Time , 1962 .

[37]  K. F. Riley,et al.  Mathematical methods for the physical sciences , 1975 .

[38]  G. S. Watson,et al.  Smooth regression analysis , 1964 .

[39]  竹安 数博,et al.  Time series analysis and its applications , 2007 .

[40]  F. H. Adler Cybernetics, or Control and Communication in the Animal and the Machine. , 1949 .

[41]  N. Christakis,et al.  The Spread of Obesity in a Large Social Network Over 32 Years , 2007, The New England journal of medicine.

[42]  William Alexander,et al.  Nonparametric Smoothing and Lack-of-Fit Tests , 1999, Technometrics.

[43]  Lawrence K. Saul,et al.  Think Globally, Fit Locally: Unsupervised Learning of Low Dimensional Manifold , 2003, J. Mach. Learn. Res..

[44]  Luc Devroye,et al.  Combinatorial methods in density estimation , 2001, Springer series in statistics.

[45]  D. Rubin,et al.  The central role of the propensity score in observational studies for causal effects , 1983 .

[46]  G. Wahba Spline models for observational data , 1990 .

[47]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[48]  Godfrey H. Thomson,et al.  A HIERARCHY WITHOUT A GENERAL FACTOR1 , 1916 .

[49]  Gerhard Tutz,et al.  Regression for Categorical Data , 2011 .

[50]  L. Thurstone The Vectors of Mind , 1935 .

[51]  P. Bühlmann,et al.  Variable Length Markov Chains: Methodology, Computing, and Software , 2004 .

[52]  J. R. Alford,et al.  Are Political Orientations Genetically Transmitted? , 2005, American Political Science Review.

[53]  J. Sethna Statistical Mechanics: Entropy, Order Parameters, and Complexity , 2021 .

[54]  Ian D. Lawrie,et al.  A unified grand tour of theoretical physics , 1990 .

[55]  Martin Lawn,et al.  A new lease of life for Thomson's bonds model of intelligence. , 2009, Psychological review.

[56]  B. Silverman,et al.  Spline Smoothing: The Equivalent Variable Kernel Method , 1984 .

[57]  Norbert Wiener,et al.  Extrapolation, Interpolation, and Smoothing of Stationary Time Series, with Engineering Applications , 1949 .

[58]  Jeffrey S. Racine Nonparametric econometrics: a primer (in Russian) , 2008 .

[59]  Alfred L. Ivry,et al.  Averroes and the Metaphysics of Causation , 1989 .

[60]  Heikki Mannila,et al.  Principles of Data Mining , 2001, Undergraduate Topics in Computer Science.

[61]  F. Leisch FlexMix: A general framework for finite mixture models and latent class regression in R , 2004 .

[62]  P. Holland Statistics and Causal Inference , 1985 .

[63]  Duncan J. Murdoch,et al.  A First Course in Statistical Programming with R , 2007 .

[64]  E. Fama,et al.  Common risk factors in the returns on stocks and bonds , 1993 .

[65]  T. Porter The Rise of Statistical Thinking, 1820-1900 , 2020 .

[66]  S. Kotz,et al.  Neyman: From Life. , 1985 .

[67]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[68]  Robert L. Wolpert,et al.  Statistical Inference , 2019, Encyclopedia of Social Network Analysis and Mining.

[69]  E. L. Lehmann,et al.  On the history and use of some standard statistical models , 2008, 0805.2838.

[70]  Jianqing Fan,et al.  Local polynomial modelling and its applications , 1994 .

[71]  J. Woodward,et al.  Scientific Explanation and the Causal Structure of the World , 1988 .

[72]  Aaron Clauset,et al.  The Evolution and Distribution of Species Body Size , 2008, Science.

[73]  Wilbert C.M. Kallenberg,et al.  Data-Driven Smooth Tests When the Hypothesis is Composite , 1997 .

[74]  Jeffrey S. Racine,et al.  Cross-Validation and the Estimation of Conditional Probability Densities , 2004 .

[75]  Qi Li,et al.  Nonparametric Econometrics: Theory and Practice , 2006 .

[76]  W. Newey,et al.  Instrumental variable estimation of nonparametric models , 2003 .

[77]  E. Chenoweth,et al.  Why Civil Resistance Works: The Strategic Logic of Nonviolent Conflict , 2008, International Security.

[78]  Charles J. Puccia,et al.  Qualitative Modeling of Complex Systems: An Introduction to Loop Analysis and Time Averaging , 1986 .

[79]  Murat F. Iyigun,et al.  Luther and Suleyman , 2008 .

[80]  Robert D. Nowak,et al.  A Neyman-Pearson approach to statistical learning , 2005, IEEE Transactions on Information Theory.

[81]  Wm. R. Wright General Intelligence, Objectively Determined and Measured. , 1905 .

[82]  Larry A. Wasserman,et al.  The Nonparanormal: Semiparametric Estimation of High Dimensional Undirected Graphs , 2009, J. Mach. Learn. Res..

[83]  K. Kafadar,et al.  Smoothing geographical data, particularly rates of disease. , 1996, Statistics in medicine.

[84]  D. Freedman,et al.  De Finetti's Theorem for Markov Chains , 1980 .

[85]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[86]  Dominik Janzing,et al.  On causally asymmetric versions of Occam's Razor and their relation to thermodynamics , 2007, 0708.3411.

[87]  Mikhail Belkin,et al.  Laplacian Eigenmaps for Dimensionality Reduction and Data Representation , 2003, Neural Computation.

[88]  M. Stone Cross‐Validatory Choice and Assessment of Statistical Predictions , 1976 .

[89]  Clark Glymour,et al.  Search for Additive Nonlinear Time Series Causal Models , 2008, J. Mach. Learn. Res..

[90]  E. S. Pearson,et al.  THE TIME INTERVALS BETWEEN INDUSTRIAL ACCIDENTS , 1952 .

[91]  Patrik O. Hoyer,et al.  Data-driven covariate selection for nonparametric estimation of causal effects , 2013, AISTATS.

[92]  Phil Spector,et al.  Data manipulation with R , 2008 .

[93]  Hadley Wickham,et al.  The Split-Apply-Combine Strategy for Data Analysis , 2011 .

[94]  Umesh V. Vazirani,et al.  An Introduction to Computational Learning Theory , 1994 .

[95]  Angelo J. Canty,et al.  Bootstrap diagnostics and remedies , 2006 .

[96]  Jeffrey S. Racine,et al.  Nonparametric Econometrics: The np Package , 2008 .

[97]  Mircea Eliade,et al.  The Forge and the Crucible: The Origins and Structure of Alchemy , 1979 .

[98]  P. Bühlmann Bootstraps for Time Series , 2002 .

[99]  W. DuMouchel,et al.  Using Sample Survey Weights in Multiple Regression Analyses of Stratified Samples , 1983 .

[100]  Christopher Winship,et al.  Counterfactuals and Causal Inference: Methods and Principles for Social Research , 2007 .

[101]  Robert M. Solow,et al.  Growth Theory: An Exposition , 1971 .

[102]  L. Brown Fundamentals of statistical exponential families: with applications in statistical decision theory , 1986 .

[103]  Cosma Rohilla Shalizi,et al.  Homophily and Contagion Are Generically Confounded in Observational Social Network Studies , 2010, Sociological methods & research.

[104]  Josef Honerkamp,et al.  Statistical Physics: An Advanced Approach with Applications , 1998 .

[105]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[106]  Raj Chetty,et al.  Where is the Land of Opportunity? The Geography of Intergenerational Mobility in the United States* , 2014 .

[107]  P. Hedström Dissecting the Social: On the Principles of Analytical Sociology , 2005 .

[108]  Norman Matloff,et al.  The Art of R Programming: A Tour of Statistical Software Design , 2011 .

[109]  E. Nadaraya On Estimating Regression , 1964 .

[110]  S. Fienberg,et al.  The Clockwork Muse: The Predictability of Artistic Change. , 1991 .

[111]  Jianming Ye On Measuring and Correcting the Effects of Data Mining and Model Selection , 1998 .

[112]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[113]  Peter Bühlmann,et al.  Model Selection for Variable Length Markov Chains and Tuning the Context Algorithm , 2000 .

[114]  A. Fraser Hidden Markov Models and Dynamical Systems , 2011 .

[115]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[116]  Angie Wade Matched Sampling for Causal Effects , 2008 .

[117]  Bernhard Schölkopf,et al.  Hilbert Space Embeddings and Metrics on Probability Measures , 2009, J. Mach. Learn. Res..

[118]  D. MacKenzie An Engine, Not a Camera: How Financial Models Shape Markets , 2006 .

[119]  Cosma Rohilla Shalizi,et al.  Philosophy and the practice of Bayesian statistics. , 2010, The British journal of mathematical and statistical psychology.

[120]  S. Axler Linear Algebra Done Right , 1995, Undergraduate Texts in Mathematics.

[121]  John W. Tukey,et al.  Unsolved Problems of Experimental Statistics , 1954 .

[122]  O. Barndorff-Nielsen Information and Exponential Families in Statistical Theory , 1980 .

[123]  Robert A. Jacobs,et al.  Bias/Variance Analyses of Mixtures-of-Experts Architectures , 1997, Neural Computation.

[124]  Yi-Hao Kao,et al.  Learning a factor model via regularized PCA , 2011, Machine Learning.

[125]  Alan David Hutson,et al.  Resampling Methods for Dependent Data , 2004, Technometrics.

[126]  Richard A. Harshman,et al.  Indexing by Latent Semantic Analysis , 1990, J. Am. Soc. Inf. Sci..

[127]  W. R. Howard The Nature of Mathematical Modeling , 2006 .

[128]  Bernhard Schölkopf,et al.  A Kernel Two-Sample Test , 2012, J. Mach. Learn. Res..

[129]  Evgueni A. Haroutunian,et al.  Information Theory and Statistics , 2011, International Encyclopedia of Statistical Science.

[130]  Joseph Adler,et al.  R in a Nutshell , 2010 .

[131]  M. Bartlett,et al.  An Introduction to Stochastic Processes with Special Reference to Methods and Applications. , 1955 .

[132]  P. A. P. Moran,et al.  PATH COEFFICIENTS RECONSIDERED , 1961 .

[133]  Geraint Rees,et al.  Political Orientations Are Correlated with Brain Structure in Young Adults , 2011, Current Biology.

[134]  Bruce Western,et al.  Vague Theory and Model Uncertainty in Macrosociology , 1996 .

[135]  Leslie Godfrey Misspecification Tests in Econometrics: The Lagrange Multiplier Principle and Other Approaches , 1988 .

[136]  T. Landauer,et al.  A Solution to Plato's Problem: The Latent Semantic Analysis Theory of Acquisition, Induction, and Representation of Knowledge. , 1997 .

[137]  Thomas S. Richardson,et al.  A Discovery Algorithm for Directed Cyclic Graphs , 1996, UAI.

[138]  Thomas Hofmann,et al.  Probabilistic Latent Semantic Analysis , 1999, UAI.

[139]  Edmund Taylor Whittaker On a New Method of Graduation , 1922, Proceedings of the Edinburgh Mathematical Society.

[140]  Mark Hamer,et al.  Toothbrushing, inflammation, and risk of cardiovascular disease: results from Scottish Health Survey , 2010, BDJ.

[141]  Angus Deaton Instruments, Randomization, and Learning about Development , 2010 .

[142]  D. Hunter,et al.  Goodness of Fit of Social Network Models , 2008 .

[143]  David Hinkley,et al.  Bootstrap Methods: Another Look at the Jackknife , 2008 .

[144]  Terry L King Smooth Tests of Goodness of Fit , 1991 .

[145]  Bernhard Schölkopf,et al.  Kernel-based Conditional Independence Test and Application in Causal Discovery , 2011, UAI.

[146]  Martina Morris,et al.  2. Relative Distribution Methods , 1998 .

[147]  Timothy J. Robinson,et al.  Linear Models With R , 2005, Technometrics.

[148]  Larry Wasserman,et al.  Spectral Connectivity Analysis , 2008, 0811.0121.

[149]  Elizabeth A Stuart,et al.  Matching methods for causal inference: A review and a look forward. , 2010, Statistical science : a review journal of the Institute of Mathematical Statistics.

[150]  Gábor Lugosi,et al.  Introduction to Statistical Learning Theory , 2004, Advanced Lectures on Machine Learning.

[151]  W. Wysocki Mathematical foundations of multivariate path analysis , 1991 .

[152]  C. Reinsch Smoothing by spline functions , 1967 .

[153]  A. Gelman A Bayesian Formulation of Exploratory Data Analysis and Goodness‐of‐fit Testing * , 2003 .

[154]  I J Schoenberg,et al.  SPLINE FUNCTIONS AND THE PROBLEM OF GRADUATION. , 1964, Proceedings of the National Academy of Sciences of the United States of America.

[155]  L. A. Mcgee,et al.  Discovery of the Kalman filter as a practical tool for aerospace and industry , 1985 .

[156]  Ali Esmaili,et al.  Probability and Random Processes , 2005, Technometrics.

[157]  G. Schwarz Estimating the Dimension of a Model , 1978 .

[158]  Yoshua Bengio,et al.  Pattern Recognition and Neural Networks , 1995 .

[159]  C. Elkan,et al.  Topic Models , 2008 .

[160]  Bruce D. McCullough,et al.  Statistical Analysis of Stochastic Processes in Time , 2005, Technometrics.

[161]  Gary King,et al.  MatchIt: Nonparametric Preprocessing for Parametric Causal Inference , 2011 .

[162]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[163]  G. Imbens,et al.  Large Sample Properties of Matching Estimators for Average Treatment Effects , 2004 .

[164]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[165]  Jorma Rissanen,et al.  Minimum Description Length Principle , 2010, Encyclopedia of Machine Learning.

[166]  Maxim Raginsky,et al.  Directed information and pearl's causal calculus , 2011, 2011 49th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[167]  R. Cann The history and geography of human genes , 1995, The Journal of Asian Studies.

[168]  Sati Mazumdar,et al.  Partial Correlation in Terms of Path Coefficients , 1975 .

[169]  A. Buja,et al.  Valid post-selection inference , 2013, 1306.1059.

[170]  L. Baxter Random Fields on a Network: Modeling, Statistics, and Applications , 1996 .

[171]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[172]  Mathukumalli Vidyasagar,et al.  Learning and Generalization: With Applications to Neural Networks , 2002 .

[173]  N. Wermuth,et al.  Nonlinear Time Series: Nonparametric and Parametric Methods , 2005 .

[174]  Charles Tilly,et al.  Big Structures, Large Processes, Huge Comparisons , 1986 .

[175]  Dominik Janzing,et al.  Reliable and Efficient Inference of Bayesian Networks from Sparse Data by Statistical Learning Theory , 2003, ArXiv.

[176]  Kevin T. Kelly Ockham's razor, empirical complexity, and truth-finding efficiency , 2007, Theor. Comput. Sci..

[177]  Mehmet Emre Çek,et al.  Analysis of observed chaotic data , 2004 .

[178]  Peter Bühlmann,et al.  Predicting causal effects in large-scale systems from observational data , 2010, Nature Methods.

[179]  R. Tibshirani,et al.  Linear Smoothers and Additive Models , 1989 .

[180]  Maria L. Rizzo,et al.  Brownian distance covariance , 2009, 1010.0297.

[181]  J. Laurie Snell,et al.  Markov Random Fields and Their Applications , 1980 .

[182]  R. Plevin,et al.  Approximate Bayesian Computation in Evolution and Ecology , 2011 .

[183]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[184]  John M. Chambers,et al.  Software for Data Analysis: Programming with R , 2008 .

[185]  Charles J. Geyer,et al.  Practical Markov Chain Monte Carlo , 1992 .

[186]  D. Ruppert The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2004 .

[187]  M. Maathuis,et al.  Estimating high-dimensional intervention effects from observational data , 2008, 0810.4214.

[188]  P. J. Huber The behavior of maximum likelihood estimates under nonstandard conditions , 1967 .

[189]  P. Shields The Ergodic Theory of Discrete Sample Paths , 1996 .

[190]  D. Freedman A Note on Screening Regression Equations , 1983 .

[191]  Ching Chun Li Path Analysis: A Primer , 1977 .

[192]  S. Stigler,et al.  The History of Statistics: The Measurement of Uncertainty before 1900 by Stephen M. Stigler (review) , 1986, Technology and Culture.

[193]  Christopher M. Bellitto The Reformation: A History , 2005 .

[194]  P. Hedström,et al.  Social mechanisms : an analytical approach to social theory , 1999 .

[195]  D. Cox,et al.  Inference and Asymptotics , 1994 .

[196]  B. Hansen,et al.  Optimal Full Matching and Related Designs via Network Flows , 2006 .

[197]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[198]  J. Faraway On the Cost of Data Analysis , 1992 .

[199]  D. Borsboom Measuring the mind: Conceptual issues in contemporary psychometrics , 2005 .

[200]  R. Peterson A Meta-Analysis of Variance Accounted for and Factor Loadings in Exploratory Factor Analysis , 2000 .

[201]  Robert L. Paige,et al.  The Hodrick-Prescott Filter A Special Case of Penalized Spline Smoothing , 2010 .

[202]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[203]  R. Berk Regression Analysis: A Constructive Critique , 2003 .

[204]  S T Roweis,et al.  Nonlinear dimensionality reduction by locally linear embedding. , 2000, Science.

[205]  Uwe Ligges,et al.  Scatterplot3d - an R package for visualizing multivariate data , 2003 .

[206]  Peter S. Bearman,et al.  Social Influence and the Autism Epidemic1 , 2010, American Journal of Sociology.

[207]  Geoffrey E. Hinton,et al.  A View of the Em Algorithm that Justifies Incremental, Sparse, and other Variants , 1998, Learning in Graphical Models.

[208]  Adam Krzyzak,et al.  A Distribution-Free Theory of Nonparametric Regression , 2002, Springer series in statistics.

[209]  Thomas G. Dietterich What is machine learning? , 2020, Archives of Disease in Childhood.

[210]  Nils Lid Hjort,et al.  Model Selection and Model Averaging , 2001 .

[211]  C Loehlin John,et al.  Latent variable models: an introduction to factor, path, and structural analysis , 1986 .

[212]  John H. Miller,et al.  Active Nonlinear Tests (Ants) of Complex Simulation Models , 1998 .

[213]  J. Bonner The Evolution of Complexity by Means of Natural Selection , 1988 .

[214]  Seth M. Spain,et al.  Testing the Form of Theoretical Models by Relaxing Assumptions: Comparing Parametric and Nonparametric Models , 2012 .

[215]  D. Pollard Asymptotics via Empirical Processes , 1989 .

[216]  Larry Wasserman,et al.  All of Statistics: A Concise Course in Statistical Inference , 2004 .

[217]  Dieter Forster,et al.  Hydrodynamic fluctuations, broken symmetry, and correlation functions , 1975 .

[218]  Halbert White,et al.  Estimation, inference, and specification analysis , 1996 .

[219]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[220]  B. Mandelbrot The Role of Sufficiency and of Estimation in Thermodynamics , 1962 .

[221]  Kathryn Roeder,et al.  Overdispersion Diagnostics for Generalized Linear Models , 1995 .

[222]  Ameet Talwalkar,et al.  Foundations of Machine Learning , 2012, Adaptive computation and machine learning.

[223]  Alan Y. Chiang,et al.  Generalized Additive Models: An Introduction With R , 2007, Technometrics.

[224]  Gabor Grothendieck,et al.  Lattice: Multivariate Data Visualization with R , 2008 .

[225]  Donald B. Rubin,et al.  Estimating the Causal Effects of Marketing Interventions Using Propensity Score Methodology , 2006 .

[226]  Yihui Xie,et al.  Dynamic Documents with R and knitr , 2015 .

[227]  Mark E. J. Newman,et al.  Power-Law Distributions in Empirical Data , 2007, SIAM Rev..

[228]  Vanessa Didelez,et al.  Assumptions of IV methods for observational epidemiology , 2010, 1011.0595.

[229]  Andrew P. Robinson,et al.  Introduction to Scientific Programming and Simulation Using R , 2014 .

[230]  Stephen P. Ellner,et al.  POPULATION CYCLES IN THE PINE LOOPER MOTH: DYNAMICAL TESTS OF MECHANISTIC HYPOTHESES , 2005 .

[231]  Mark Gould,et al.  Nuts and bolts for the social sciences , 1991 .

[232]  Stan Lipovetsky,et al.  Latent Variable Models and Factor Analysis , 2001, Technometrics.

[233]  Andrew Gelman,et al.  2. Average Predictive Comparisons for Models with Nonlinearity, Interactions, and Variance Components , 2007 .

[234]  R. Shiller,et al.  Stock Prices, Earnings and Expected Dividends , 1988 .

[235]  Randal Douc,et al.  Nonlinear Time Series: Theory, Methods and Applications with R Examples , 2014 .

[236]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[237]  B. Russell,et al.  Introduction to Mathematical Philosophy , 1920, The Mathematical Gazette.

[238]  Bernhard Schölkopf,et al.  Statistical Learning Theory: Models, Concepts, and Results , 2008, Inductive Logic.

[239]  M. Stephens,et al.  Interpreting principal component analyses of spatial population genetic variation , 2008, Nature Genetics.

[240]  C. Gallagher Extending the Linear Model With R: Generalized Linear, Mixed Effects and Nonparametric Regression Models , 2007 .

[241]  B. Gnedenko,et al.  Limit Distributions for Sums of Independent Random Variables , 1955 .

[242]  Terran Lane,et al.  Technical Report : Using Laplacian Methods , RKHS Smoothing Splines and Bayesian Estimation as a framework for Regression on Graph and Graph Related Domains , 2008 .

[243]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[244]  Richard Scheines,et al.  A Statistical Problem for Inference to Regulatory Structure from Associations of Gene Expression Measurements with Microarrays , 2003, Bioinform..

[245]  Anil K. Bera,et al.  Neyman's Smooth Test and its Applications in Econometrics , 2001 .

[246]  Patrik O. Hoyer,et al.  Discovering Cyclic Causal Models by Independent Components Analysis , 2008, UAI.

[247]  Malik Beshir Malik,et al.  Applied Linear Regression , 2005, Technometrics.

[248]  Peter L. Bartlett,et al.  Neural Network Learning - Theoretical Foundations , 1999 .

[249]  R. Tibshirani,et al.  A bias correction for the minimum error rate in cross-validation , 2009, 0908.2904.

[250]  F. Fisher Disequilibrium Foundations of Equilibrium Economics , 1984 .

[251]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[252]  J. A. Stewart,et al.  Nonlinear Time Series Analysis , 2015 .

[253]  Linqiao Zhao,et al.  A model of limit-order book dynamics and a consistent estimation procedure , 2010 .

[254]  Aris Spanos,et al.  A frequentist interpretation of probability for model-based inductive inference , 2011, Synthese.

[255]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[256]  M. Ezekiel A Method of Handling Curvilinear Correlation for Any Number of Variables , 1924 .