Mining smartphone data for app usage prediction and recommendations: A survey

Abstract Smartphones nowadays have become indispensable personal gadgets to support our activities in almost every aspect of our lives. Thanks to the tremendous advancement of smartphone technologies, platforms, as well as the enthusiasm of individual developers, numerous mobile applications (apps) have been created to serve a wide range of usage purposes, making our daily life more convenient. While these apps are used, data logs are typically generated and ambience context is recorded forming a rich data source of the smartphone users’ behaviors. In this paper, we survey existing studies on mining smartphone data for uncovering app usage patterns leveraging such a data source. Our discussions of the studies are organized according to two main research streams, namely app usage prediction and app recommendations alongside a few other related studies. Finally, we also present several challenges and opportunities in the emerging area of mining smartphone usage patterns.

[1]  Anindya Datta,et al.  Serendipitous Recommendation for Mobile Apps Using Item-Item Similarity Graph , 2013, AIRS.

[2]  Denzil Ferreira,et al.  Revisiting human-battery interaction with an interactive battery interface , 2013, UbiComp.

[3]  Yajin Zhou,et al.  Taming Information-Stealing Smartphone Applications (on Android) , 2011, TRUST.

[4]  Nello Cristianini,et al.  Kernel Methods for Pattern Analysis , 2003, ICTAI.

[5]  Daniel Gatica-Perez,et al.  Where and what: Using smartphones to predict next locations and applications in daily life , 2014, Pervasive Mob. Comput..

[6]  Qiang Xu,et al.  Identifying diverse usage behaviors of smartphone apps , 2011, IMC '11.

[7]  David Chu,et al.  Practical prediction and prefetch for faster access to applications on mobile phones , 2013, UbiComp.

[8]  Panagiotis Papapetrou,et al.  Social context discovery from temporal app use patterns , 2014, UbiComp Adjunct.

[9]  Katayoun Farrahi,et al.  Probabilistic Mining of Socio-Geographic Routines From Mobile Phone Data , 2010, IEEE Journal of Selected Topics in Signal Processing.

[10]  Saeed Moghaddam,et al.  MobileMiner: mining your frequent patterns on your phone , 2014, UbiComp.

[11]  Daniel Lemire,et al.  Slope One Predictors for Online Rating-Based Collaborative Filtering , 2007, SDM.

[12]  Mirco Musolesi,et al.  PrefMiner: mining user's preferences for intelligent mobile notification management , 2016, UbiComp.

[13]  Florian Michahelles,et al.  AppAware: which mobile applications are hot? , 2010, Mobile HCI.

[14]  Enhong Chen,et al.  An effective approach for mining mobile user habits , 2010, CIKM.

[15]  Niels Henze,et al.  Release your app on Sunday eve: finding the best time to deploy apps , 2011, Mobile HCI.

[16]  Alexandros Karatzoglou,et al.  Climbing the app wall: enabling mobile app discovery through context-aware recommendations , 2012, CIKM '12.

[17]  Nagarajan Natarajan,et al.  Which app will you use next?: collaborative filtering with interactional context , 2013, RecSys.

[18]  Feng Zhao,et al.  Energy-accuracy trade-off for continuous mobile device location , 2010, MobiSys '10.

[19]  Florian Michahelles,et al.  Explicit and Implicit Ratings for Mobile Applications , 2010, GI Jahrestagung.

[20]  Clayton Shepard,et al.  Exploring iPhone usage: the influence of socioeconomic differences on smartphone adoption, usage and usability , 2012, Mobile HCI.

[21]  Ye Xu,et al.  Preference, context and communities: a multi-faceted approach to predicting smartphone app usage patterns , 2013, ISWC '13.

[22]  Bala Srinivasan,et al.  Adaptive mobile activity recognition system with evolving data streams , 2015, Neurocomputing.

[23]  Kamal Ali,et al.  GetJar mobile application recommendations with very sparse datasets , 2012, KDD.

[24]  Tamara G. Kolda,et al.  Tensor Decompositions and Applications , 2009, SIAM Rev..

[25]  Guanling Chen,et al.  AppJoy: personalized mobile application discovery , 2011, MobiSys '11.

[26]  Suman Nath,et al.  ACE: Exploiting Correlation for Energy-Efficient and Continuous Context Sensing , 2012, IEEE Transactions on Mobile Computing.

[27]  Ramesh Nallapati,et al.  Labeled LDA: A supervised topic model for credit attribution in multi-labeled corpora , 2009, EMNLP.

[28]  Mingrui Wu,et al.  Gradient descent optimization of smoothed information retrieval metrics , 2010, Information Retrieval.

[29]  Daniel Gatica-Perez,et al.  Human interaction discovery in smartphone proximity networks , 2013, Personal and Ubiquitous Computing.

[30]  Eemil Lagerspetz,et al.  The company you keep: mobile malware infection rates and inexpensive risk indicators , 2013, WWW.

[31]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[32]  Kevin Chen-Chuan Chang,et al.  Mobile user verification/identification using statistical mobility profile , 2015, 2015 International Conference on Big Data and Smart Computing (BIGCOMP).

[33]  Siyuan Liu,et al.  Effective Mobile Context Pattern Discovery via Adapted Hierarchical Dirichlet Processes , 2014, 2014 IEEE 15th International Conference on Mobile Data Management.

[34]  Gang Pan,et al.  Prophet: what app you wish to use next , 2013, UbiComp.

[35]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[36]  Fei Wang,et al.  A Cooperation Based Metric for Mobile Applications Recommendation , 2013, 2013 IEEE/WIC/ACM International Joint Conferences on Web Intelligence (WI) and Intelligent Agent Technologies (IAT).

[37]  Emiliano Miluzzo,et al.  A survey of mobile phone sensing , 2010, IEEE Communications Magazine.

[38]  Jeffrey Dean,et al.  Distributed Representations of Words and Phrases and their Compositionality , 2013, NIPS.

[39]  Alexander De Luca,et al.  Patterns in the wild: a field study of the usability of pattern and pin-based authentication on mobile devices , 2013, MobileHCI '13.

[40]  Hui Xiong,et al.  Exploiting enriched contextual information for mobile app classification , 2012, CIKM '12.

[41]  Wolfgang Wörndl,et al.  A Hybrid Recommender System for Context-aware Recommendations of Mobile Applications , 2007, 2007 IEEE 23rd International Conference on Data Engineering Workshop.

[42]  Vincent Etter,et al.  Where to go from here? Mobility prediction from instantaneous information , 2013, Pervasive Mob. Comput..

[43]  Mirco Musolesi,et al.  Designing content-driven intelligent notification mechanisms for mobile applications , 2015, UbiComp.

[44]  Tapio Soikkeli,et al.  Diversity and End User Context in Smartphone Usage Sessions , 2011, 2011 Fifth International Conference on Next Generation Mobile Applications, Services and Technologies.

[45]  Seong-Bae Park,et al.  A combination of temporal and general preferences for app recommendation , 2015, 2015 International Conference on Big Data and Smart Computing (BIGCOMP).

[46]  Daniele Quercia,et al.  Recommending Social Events from Mobile Phone Location Data , 2010, 2010 IEEE International Conference on Data Mining.

[47]  Yi Wang,et al.  A framework of energy efficient mobile sensing for automatic user state recognition , 2009, MobiSys '09.

[48]  Jon M Kleinberg,et al.  Hubs, authorities, and communities , 1999, CSUR.

[49]  César A. Hidalgo,et al.  Unique in the Crowd: The privacy bounds of human mobility , 2013, Scientific Reports.

[50]  Philip S. Yu,et al.  On the Feature Discovery for App Usage Prediction in Smartphones , 2013, 2013 IEEE 13th International Conference on Data Mining.

[51]  Susumu Horiguchi,et al.  A Hidden Topic-Based Framework toward Building Applications with Short Web Documents , 2011, IEEE Transactions on Knowledge and Data Engineering.

[52]  René Mayrhofer,et al.  Diversity in locked and unlocked mobile device usage , 2014, UbiComp Adjunct.

[53]  Ahmad Rahmati,et al.  Understanding human-battery interaction on mobile phones , 2007, Mobile HCI.

[54]  Earl Oliver,et al.  The challenges in large-scale smartphone user studies , 2010, HotPlanet '10.

[55]  Siyuan Liu,et al.  Effective routine behavior pattern discovery from sparse mobile phone data via collaborative filtering , 2013, 2013 IEEE International Conference on Pervasive Computing and Communications (PerCom).

[56]  Jun Wang,et al.  Portfolio theory of information retrieval , 2009, SIGIR.

[57]  Jilei Tian,et al.  Towards Personalized Context-Aware Recommendation by Mining Context Logs through Topic Models , 2012, PAKDD.

[58]  Alastair R. Beresford,et al.  Device Analyzer: Understanding Smartphone Usage , 2013, MobiQuitous.

[59]  Alex Pentland,et al.  Predicting Personality Using Novel Mobile Phone-Based Metrics , 2013, SBP.

[60]  Clayton Shepard,et al.  LiveLab: measuring wireless networks and smartphone users in the field , 2011, SIGMETRICS Perform. Evaluation Rev..

[61]  Martha Larson,et al.  TFMAP: optimizing MAP for top-n context-aware recommendation , 2012, SIGIR '12.

[62]  Ming Zhang,et al.  Where is the energy spent inside my app?: fine grained energy accounting on smartphones with Eprof , 2012, EuroSys '12.

[63]  Lei Chen,et al.  Towards Better Understanding of App Functions , 2015, Journal of Computer Science and Technology.

[64]  Hui Xiong,et al.  Ranking fraud detection for mobile apps: a holistic view , 2013, CIKM.

[65]  Yifan Hu,et al.  Collaborative Filtering for Implicit Feedback Datasets , 2008, 2008 Eighth IEEE International Conference on Data Mining.

[66]  Hinrich Schütze,et al.  Introduction to information retrieval , 2008 .

[67]  Daniel Gatica-Perez,et al.  Smartphone usage in the wild: a large-scale analysis of applications and context , 2011, ICMI '11.

[68]  Xiaoxiao Ma,et al.  Predicting mobile application usage using contextual information , 2012, UbiComp.

[69]  Daniel Gatica-Perez,et al.  What did you do today?: discovering daily routines from large-scale mobile data , 2008, ACM Multimedia.

[70]  James G. Phillips,et al.  Personality and self reported mobile phone use , 2008, Comput. Hum. Behav..

[71]  Tat-Seng Chua,et al.  Addressing cold-start in app recommendation: latent user models constructed from twitter followers , 2013, SIGIR.

[72]  Philip S. Yu,et al.  On Periodicity Detection and Structural Periodic Similarity , 2005, SDM.

[73]  Florian Michahelles,et al.  Google play is not a long tail market: an empirical analysis of app adoption on the Google play app market , 2013, SAC '13.

[74]  Archan Misra,et al.  Exploring variety seeking behavior in mobile users , 2014, UbiComp Adjunct.

[75]  Hui Xiong,et al.  Mobile app recommendations with security and privacy awareness , 2014, KDD.

[76]  Jin-Hyuk Hong,et al.  Understanding and prediction of mobile application usage for smart phones , 2012, UbiComp.

[77]  Wang-Chien Lee,et al.  App recommendation: a contest between satisfaction and temptation , 2013, WSDM.

[78]  David Evans,et al.  Context-Derived Pseudonyms for Protection of Privacy in Transport Middleware and Applications , 2007, Fifth Annual IEEE International Conference on Pervasive Computing and Communications Workshops (PerComW'07).

[79]  Juneyoung Park,et al.  AppTrends: A graph-based mobile app recommendation system using usage history , 2015, 2015 International Conference on Big Data and Smart Computing (BIGCOMP).

[80]  Hongxia Jin,et al.  Connect the dots by understanding user status and transitions , 2014, UbiComp Adjunct.

[81]  Khalid Saeed,et al.  User Authentication for Mobile Devices , 2013, CISIM.

[82]  R. McCrae,et al.  An introduction to the five-factor model and its applications. , 1992, Journal of personality.

[83]  Ana Belén Barragáns-Martínez,et al.  Which App? A recommender system of applications in markets: Implementation of the service for monitoring users' interaction , 2012, Expert Syst. Appl..

[84]  Simon Moritz,et al.  Utilizing implicit feedback and context to recommend mobile applications from first use , 2011, CaRR '11.

[85]  Enhong Chen,et al.  A habit mining approach for discovering similar mobile users , 2012, WWW.

[86]  Zhigang Liu,et al.  Darwin phones: the evolution of sensing and inference on mobile phones , 2010, MobiSys '10.

[87]  Yang Wang,et al.  AppRush: Using Dynamic Shortcuts to Facilitate Application Launching on Mobile Devices , 2013, ANT/SEIT.

[88]  Daniel Gatica-Perez,et al.  By their apps you shall understand them: mining large-scale patterns of mobile phone usage , 2010, MUM.

[89]  Daniel Gatica-Perez,et al.  Mining large-scale smartphone data for personality studies , 2013, Personal and Ubiquitous Computing.

[90]  Bhaskar Krishnamachari,et al.  The Tradeoff between Energy Efficiency and User State Estimation Accuracy in Mobile Sensing , 2009, MobiCASE.

[91]  Kevin Chen-Chuan Chang,et al.  Mobility Profiling for User Verification with Anonymized Location Data , 2015, IJCAI.

[92]  Hannu Verkasalo,et al.  Contextual patterns in mobile service usage , 2009, Personal and Ubiquitous Computing.

[93]  Bo Yan,et al.  Nihao: A Predictive Smartphone Application Launcher , 2012, MobiCASE.

[94]  Daniel Gatica-Perez,et al.  GroupUs: Smartphone Proximity Data and Human Interaction Type Mining , 2011, 2011 15th Annual International Symposium on Wearable Computers.

[95]  Antti Oulasvirta,et al.  Habits make smartphone use more pervasive , 2011, Personal and Ubiquitous Computing.

[96]  Antti Jylhä,et al.  How carat affects user behavior: implications for mobile battery awareness applications , 2014, CHI.

[97]  Thomas L. Griffiths,et al.  The Author-Topic Model for Authors and Documents , 2004, UAI.

[98]  Frank Stajano,et al.  Location Privacy in Pervasive Computing , 2003, IEEE Pervasive Comput..

[99]  Daniel Gatica-Perez,et al.  Who's Who with Big-Five: Analyzing and Classifying Personality Traits with Smartphones , 2011, 2011 15th Annual International Symposium on Wearable Computers.

[100]  Wen-Jing Hsu,et al.  Mining GPS data for mobility patterns: A survey , 2014, Pervasive Mob. Comput..

[101]  Christoffer Davidsson Mobile Application Recommender System , 2010 .

[102]  Dennis Shasha,et al.  Efficient elastic burst detection in data streams , 2003, KDD '03.

[103]  Nathan Eagle,et al.  Community Computing: Comparisons between Rural and Urban Societies Using Mobile Phone Data , 2009, 2009 International Conference on Computational Science and Engineering.

[104]  Zhigang Liu,et al.  The Jigsaw continuous sensing engine for mobile phone applications , 2010, SenSys '10.

[105]  Dawn Xiaodong Song,et al.  Touchalytics: On the Applicability of Touchscreen Input as a Behavioral Biometric for Continuous Authentication , 2012, IEEE Transactions on Information Forensics and Security.

[106]  Heinrich Hußmann,et al.  Touch me once and i know it's you!: implicit authentication based on touch screen patterns , 2012, CHI.

[107]  Wen-Chih Peng,et al.  On mining mobile apps usage behavior for predicting apps usage in smartphones , 2013, CIKM.

[108]  Lei Cen,et al.  Personalized Mobile App Recommendation: Reconciling App Functionality and User Privacy Preference , 2015, WSDM.

[109]  J. Wenny Rahayu,et al.  Mobile cloud computing: A survey , 2013, Future Gener. Comput. Syst..

[110]  Gregory D. Abowd,et al.  Farther Than You May Think: An Empirical Investigation of the Proximity of Users to Their Mobile Phones , 2006, UbiComp.

[111]  Nir Friedman,et al.  Bayesian Network Classifiers , 1997, Machine Learning.

[112]  Tat-Seng Chua,et al.  New and improved: modeling versions to improve app recommendation , 2014, SIGIR.

[113]  Ricardo Baeza-Yates,et al.  Predicting The Next App That You Are Going To Use , 2015, WSDM.

[114]  Denzil Ferreira,et al.  Understanding Human-Smartphone Concerns: A Study of Battery Life , 2011, Pervasive.

[115]  Hojung Cha,et al.  Predicting smartphone battery usage using cell tower ID monitoring , 2014, Pervasive Mob. Comput..

[116]  Ian H. Witten,et al.  Data Compression Using Adaptive Coding and Partial String Matching , 1984, IEEE Trans. Commun..

[117]  Antonio Krüger,et al.  AppFunnel: a framework for usage-centric evaluation of recommender systems that suggest mobile applications , 2013, IUI '13.

[118]  Johannes Schöning,et al.  Falling asleep with Angry Birds, Facebook and Kindle: a large scale study on mobile application usage , 2011, Mobile HCI.

[119]  Nobuo Kawaguchi,et al.  App.locky: users' context collecting platform for context-aware application recommendation , 2011, UbiCrowd '11.

[120]  Jie Liu,et al.  Fast app launching for mobile devices using predictive user context , 2012, MobiSys '12.

[121]  Alex Pentland,et al.  Composite Social Network for Predicting Mobile Apps Installation , 2011, AAAI.

[122]  Harry Bouwman,et al.  Analysis of users and non-users of smartphone applications , 2010, Telematics Informatics.

[123]  Alastair R. Beresford,et al.  Device analyzer: large-scale mobile data collection , 2014, PERV.

[124]  Konstantina Papagiannaki,et al.  What's app?: a wide-scale measurement study of smart phone markets , 2012, MOCO.

[125]  Alex Pentland,et al.  Reality mining: sensing complex social systems , 2006, Personal and Ubiquitous Computing.

[126]  Lionel M. Ni,et al.  An unsupervised framework for sensing individual and cluster behavior patterns from human mobile data , 2012, UbiComp.

[127]  Deborah Estrin,et al.  Diversity in smartphone usage , 2010, MobiSys '10.

[128]  Ryosuke Shibasaki,et al.  Activity-Aware Map: Identifying Human Daily Activity Pattern Using Mobile Phone Data , 2010, HBU.

[129]  Richard E. Neapolitan,et al.  Learning Bayesian networks , 2007, KDD '07.