Mathematical treatment of PDE model of chemotactic E. coli colonies

Abstract We consider an initial-boundary value problem for reaction-diffusion equations coupled with the Keller-Segel system from the chemotaxis theory which describe a formation of colony patterns of bacteria Escherichia coli. The main goal of this work is to show that global-in-time solutions of this model converge towards stationary solutions depending on initial conditions.

[1]  Nicola Bellomo,et al.  Toward a mathematical theory of Keller–Segel models of pattern formation in biological tissues , 2015 .

[2]  F. Rothe Global Solutions of Reaction-Diffusion Systems , 1984 .

[3]  Atsushi Yagi,et al.  Abstract Parabolic Evolution Equations and their Applications , 2009 .

[4]  Michael Winkler,et al.  Blow-up in a higher-dimensional chemotaxis system despite logistic growth restriction , 2011 .

[5]  M. Mimura,et al.  A model aided understanding of spot pattern formation in chemotactic E. coli colonies , 2010 .

[6]  Michael Winkler,et al.  Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system , 2011, 1112.4156.

[7]  L. Segel,et al.  Model for chemotaxis. , 1971, Journal of theoretical biology.

[8]  Xinru Cao,et al.  Global bounded solutions of the higher-dimensional Keller-Segel system under smallness conditions in optimal spaces , 2014, 1405.6666.

[9]  Michael Winkler,et al.  How Far Can Chemotactic Cross-diffusion Enforce Exceeding Carrying Capacities? , 2014, J. Nonlinear Sci..

[10]  J. Murray,et al.  Model and analysis of chemotactic bacterial patterns in a liquid medium , 1999, Journal of mathematical biology.

[11]  Benoît Perthame,et al.  Critical space for the parabolic-parabolic Keller–Segel model in Rd , 2006 .

[12]  Tohru Tsujikawa,et al.  Aggregating pattern dynamics in a chemotaxis model including growth , 1996 .

[13]  Dirk Horstmann,et al.  Boundedness vs. blow-up in a chemotaxis system , 2005 .

[14]  A. Polezhaev,et al.  Spatial patterns formed by chemotactic bacteria Escherichia coli. , 2006, The International journal of developmental biology.

[15]  W. N. Reynolds,et al.  Aggregation Patterns in Stressed Bacteria. , 1995, Physical review letters.

[16]  Dirk Horstmann,et al.  F ¨ Ur Mathematik in Den Naturwissenschaften Leipzig from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences from 1970 until Present: the Keller-segel Model in Chemotaxis and Its Consequences , 2022 .

[17]  Modeling Complex Patterns in Bacterial Colonies. , 2000 .

[18]  Michael Winkler,et al.  A Chemotaxis System with Logistic Source , 2007 .

[19]  H. Amann Dual semigroups and second order linear elliptic boundary value problems , 1983 .

[20]  H. Berg,et al.  Dynamics of formation of symmetrical patterns by chemotactic bacteria , 1995, Nature.

[21]  W. Jäger,et al.  On explosions of solutions to a system of partial differential equations modelling chemotaxis , 1992 .

[22]  Toshitaka Nagai,et al.  Blowup of nonradial solutions to parabolic–elliptic systems modeling chemotaxis in two-dimensional domains , 2001 .

[23]  N. Mizoguchi Finite-time blowup in Cauchy problem of parabolic-parabolic chemotaxis system , 2020 .

[24]  H. Berg,et al.  Complex patterns formed by motile cells of Escherichia coli , 1991, Nature.

[25]  L. Segel,et al.  Initiation of slime mold aggregation viewed as an instability. , 1970, Journal of theoretical biology.

[26]  Michael Winkler,et al.  Aggregation vs. global diffusive behavior in the higher-dimensional Keller–Segel model , 2010 .