Exact Asymptotics of Divide-and-Conquer Recurrences

The divide-and-conquer principle is a major paradigm of algorithms design. Corresponding cost functions satisfy recurrences that directly reflect the decomposition mechanism used in the algorithm. This work shows that periodicity phenomena, often of a fractal nature, are ubiquitous in the performances of these algorithms. Mellin transforms and Dirichlet series are used to attain precise asymptotic estimates. The method is illustrated by a detailed average case, variance and distribution analysis of the classic top-down recursive mergesort algorithm.

[1]  T. Apostol Introduction to analytic number theory , 1976 .

[2]  Christian Buchta,et al.  On the Average Number of Maxima in a Set of Vectors , 1989, Inf. Process. Lett..

[3]  Jean-Marie Dumont,et al.  Systemes de Numeration et Fonctions Fractales Relatifs aux Substitutions , 1989, Theor. Comput. Sci..

[4]  H. T. Kung,et al.  On the Average Number of Maxima in a Set of Vectors and Applications , 1978, JACM.

[5]  Alain Thomas,et al.  Systems of numeration and fractal functions relating to substitutions (French) , 1989 .

[6]  Jean-Paul Allouche,et al.  Dirichlet Series and Curious infinite Products , 1985 .

[7]  Tom M. Apostol,et al.  Dirichlet series related to the Riemann zeta function , 1984 .

[8]  Kenneth L. Clarkson,et al.  Fast linear expected-time algorithms for computing maxima and convex hulls , 1993, SODA '90.

[9]  Helmut Prodinger,et al.  Mellin Transforms and Asymptotics: Digital Sums , 1994, Theor. Comput. Sci..

[10]  Philippe Dumas Récurrences mahlériennes, suites automatiques, études asymptotiques , 1993 .

[11]  Donald E. Knuth,et al.  Sorting and Searching , 1973 .

[12]  Ronald L. Rivest,et al.  Introduction to Algorithms , 1990 .

[13]  Kenneth B. Stolarsky Power and Exponential Sums of Digital Sums Related to Binomial Coefficient Parity , 1977 .

[14]  Donald E. Knuth The art of computer programming: fundamental algorithms , 1969 .

[15]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[16]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[17]  Jeffrey Shallit,et al.  The Ring of k-Regular Sequences , 1990, Theor. Comput. Sci..

[18]  Ilan Vardi,et al.  Computational recreations in Mathematica , 1991 .