Isometry invariant permutation codes and mutually orthogonal Latin squares
暂无分享,去创建一个
[1] H. F. Macneish,et al. Euler Squares , 2010 .
[2] D. T. Todorov. Four Mutually Orthogonal Latin Squares of Order 14 , 2012 .
[3] H. K. Farahat,et al. The Symmetric Group as Metric Space , 1960 .
[4] Richard M. Wilson,et al. Concerning the number of mutually orthogonal latin squares , 1974, Discret. Math..
[5] Mieczyslaw Wojtas. Five mutually orthogonal Latin squares of order 35 , 1996 .
[6] R. Julian R. Abel. Existence of Five MOLS of Orders 18 and 60 , 2015 .
[7] John J. Cannon,et al. The Magma Algebra System I: The User Language , 1997, J. Symb. Comput..
[8] Patric R. J. Östergård,et al. Permutation codes invariant under isometries , 2015, Des. Codes Cryptogr..
[9] Torleiv Kløve,et al. Permutation arrays for powerline communication and mutually orthogonal latin squares , 2004, IEEE Transactions on Information Theory.
[10] R. C. Bose,et al. Further Results on the Construction of Mutually Orthogonal Latin Squares and the Falsity of Euler's Conjecture , 1960, Canadian Journal of Mathematics.
[11] Concerning eight mutually orthogonal latin squares , 2007 .