THE ORIGIN OF DUST IN THE EARLY UNIVERSE: PROBING THE STAR FORMATION HISTORY OF GALAXIES BY THEIR DUST CONTENT

Two distinct scenarios for the origin of the ∼4 × 108 M☉ of dust observed in the high-redshift (z = 6.4) quasar J1148+5251 have been proposed. The first assumes that this galaxy is much younger than the age of the universe at that epoch so that only supernovae (SNe) could have produced this dust. The second scenario assumes a significantly older galactic age, so that the dust could have formed in lower-mass asymptotic giant branch (AGB) stars. Presenting new integral solutions for the chemical evolution of metals and dust in galaxies, we offer a critical evaluation of these two scenarios and observational consequences that can discriminate between the two. We show that AGB stars can produce the inferred mass of dust in this object, however, the final mass of surviving dust depends on the galaxy's star formation history (SFH). In general, SNe cannot produce the observed amount of dust unless the average SN event creates over ∼2 M☉ of dust in its ejecta. However, special SFHs can be constructed in which SNe can produce the inferred dust mass with a reasonable average dust yield of ∼0.15 M☉. The two scenarios propose different origins for the galaxy's spectral energy distribution, different star formation efficiencies and stellar masses, and consequently different comoving number densities of J1148+5251-type hyperluminous infrared (IR) objects. The detection of diagnostic mid-IR fine structure lines and more complete surveys determining the comoving number density of these objects can discriminate between the two scenarios.

[1]  J. Hjorth,et al.  Dust grain growth in the interstellar medium of 5 < z < 6.5 quasars , 2010, 1006.5466.

[2]  O. Krause,et al.  A Herschel PACS and SPIRE study of the dust content of the Cassiopeia A supernova remnant , 2010, 1005.2688.

[3]  R. Bouwens,et al.  THE GALAXY LUMINOSITY FUNCTION DURING THE REIONIZATION EPOCH , 2010, 1004.0384.

[4]  G. Richards,et al.  Dust-free quasars in the early Universe , 2010, Nature.

[5]  E. Dwek,et al.  THE CHEMISTRY OF POPULATION III SUPERNOVA EJECTA. II. THE NUCLEATION OF MOLECULAR CLUSTERS AS A DIAGNOSTIC FOR DUST IN THE EARLY UNIVERSE , 2010, 1002.3060.

[6]  L. Greggio The rates of type Ia supernovae – II. Diversity of events at low and high redshifts , 2010, 1001.3033.

[7]  M. Halpern,et al.  AKARI AND BLAST OBSERVATIONS OF THE CASSIOPEIA A SUPERNOVA REMNANT AND SURROUNDING INTERSTELLAR MEDIUM , 2009, 0910.1094.

[8]  O. Krause,et al.  FORMATION AND EVOLUTION OF DUST IN TYPE IIb SUPERNOVAE WITH APPLICATION TO THE CASSIOPEIA A SUPERNOVA REMNANT , 2009, 0909.4145.

[9]  M. Vaccari,et al.  Galaxy evolution from deep multi-wavelength infrared surveys: a prelude to Herschel , 2009, 0906.4264.

[10]  M. Franx,et al.  VERY BLUE UV-CONTINUUM SLOPE β OF LOW LUMINOSITY z ∼ 7 GALAXIES FROM WFC3/IR: EVIDENCE FOR EXTREMELY LOW METALLICITIES? , 2009, 0910.0001.

[11]  T. Heckman,et al.  THE INCIDENCE OF ACTIVE GALACTIC NUCLEI IN PURE DISK GALAXIES: THE SPITZER VIEW , 2009, 0908.1820.

[12]  Edward B. Jenkins,et al.  A UNIFIED REPRESENTATION OF GAS-PHASE ELEMENT DEPLETIONS IN THE INTERSTELLAR MEDIUM , 2009, 0905.3173.

[13]  A. Andersen,et al.  Stellar sources of dust in the high-redshift Universe , 2009, 0905.1691.

[14]  M. Stiavelli From First Light to Reionization: The End of the Dark Ages , 2009 .

[15]  M. Stiavelli From First Light to Reionization , 2009 .

[16]  K. Bundy,et al.  THE EVOLUTIONARY HISTORY OF LYMAN BREAK GALAXIES BETWEEN REDSHIFT 4 AND 6: OBSERVING SUCCESSIVE GENERATIONS OF MASSIVE GALAXIES IN FORMATION , 2009, 0902.2907.

[17]  S. Satyapal,et al.  A SPITZER SPECTROSCOPIC SURVEY OF LOW-IONIZATION NUCLEAR EMISSION-LINE REGIONS: CHARACTERIZATION OF THE CENTRAL SOURCE , 2008, 0811.1252.

[18]  S. Maddox,et al.  Cassiopeia A: dust factory revealed via submillimetre polarimetry , 2008, 0809.0887.

[19]  M. Trieloff,et al.  Evolution of interstellar dust and stardust in the solar neighbourhood , 2007, 0706.1155.

[20]  J. Rho,et al.  Freshly Formed Dust in the Cassiopeia A Supernova Remnant as Revealed by the Spitzer Space Telescope , 2007, 0709.2880.

[21]  J. Lattanzio,et al.  Stellar Models and Yields of Asymptotic Giant Branch Stars , 2007, Publications of the Astronomical Society of Australia.

[22]  P. Chanial,et al.  Stellar Evolutionary Effects on the Abundances of Polycyclic Aromatic Hydrocarbons and Supernova-Condensed Dust in Galaxies , 2007, 0708.0790.

[23]  Linhua Jiang,et al.  Modeling the Dust Properties of z ~ 6 Quasars with ART2—All-Wavelength Radiative Transfer with Adaptive Refinement Tree , 2007, 0706.3706.

[24]  E. Dwek,et al.  The Evolution of Dust in the Early Universe with Applications to the Galaxy SDSS J1148+5251 , 2007, 0705.3799.

[25]  P. Hopkins,et al.  Formation of z~6 Quasars from Hierarchical Galaxy Mergers , 2006, astro-ph/0608190.

[26]  T. Greif,et al.  The First Stars , 2003, astro-ph/0311019.

[27]  Isaac Shlosman,et al.  The AGN-obscuring Torus: The End of the “Doughnut” Paradigm? , 2006 .

[28]  H. Gail,et al.  Composition and quantities of dust produced by AGB-stars and returned to the interstellar medium , 2006 .

[29]  G. Weidenspointner,et al.  Radioactive 26Al from massive stars in the Galaxy , 2006, Nature.

[30]  National Radio Astronomy Observatory,et al.  The Black Hole-Bulge Relationship for QSOs at High Redshift , 2005, astro-ph/0512418.

[31]  L. Greggio The rates of type Ia supernovae - I. Analytical formulations , 2005, astro-ph/0504376.

[32]  R. Tuffs,et al.  The Spectral Energy Distribution of Gas-Rich Galaxies: Confronting Models with Data , 2005 .

[33]  E. Dwek Interstellar dust: what is it, how does it evolve, and what are its observational consequences? , 2004, astro-ph/0412344.

[34]  E. Oliva,et al.  A supernova origin for dust in a high-redshift quasar , 2004, Nature.

[35]  B. Draine,et al.  Astrophysics of Dust , 2004 .

[36]  E. Dishoeck ISO Spectroscopy of Gas and Dust: From Molecular Clouds to Protoplanetary Disks , 2004, astro-ph/0403061.

[37]  J. Monnier,et al.  Three-dimensional dust radiative-transfer models: the Pinwheel Nebula of WR 104 , 2004, astro-ph/0401574.

[38]  Richard G. Arendt,et al.  Interstellar Dust Models Consistent with Extinction, Emission, and Abundance Constraints , 2003, astro-ph/0312641.

[39]  K. Yanagisawa,et al.  Grain Growth in the Dark Cloud L1251 , 2003, astro-ph/0308314.

[40]  L. Dunne,et al.  Type II supernovae as a significant source of interstellar dust , 2003, Nature.

[41]  D. O. Astronomy,et al.  Dust in the Early Universe: Dust Formation in the Ejecta of Population III Supernovae , 2003, astro-ph/0307108.

[42]  R. Nichol,et al.  Red and Reddened Quasars in the Sloan Digital Sky Survey , 2003, astro-ph/0305305.

[43]  M. Edmunds,et al.  Dust formation in early galaxies , 2003, astro-ph/0302566.

[44]  V. Narayanan,et al.  A Survey of z > 5.7 Quasars in the Sloan Digital Sky Survey. II. Discovery of Three Additional Quasars at z > 6 , 2003, astro-ph/0301135.

[45]  M. Karovska,et al.  Smoking Quasars: A New Source for Cosmic Dust , 2002, astro-ph/0202002.

[46]  D. Elbaz,et al.  Interpreting the Cosmic Infrared Background: Constraints on the Evolution of the Dust-enshrouded Star Formation Rate , 2001, astro-ph/0103067.

[47]  J. Greenberg,et al.  Tracking the organic refractory component from interstellar dust to comets. , 1999, Advances in Space Research.

[48]  Jr.,et al.  STAR FORMATION IN GALAXIES ALONG THE HUBBLE SEQUENCE , 1998, astro-ph/9807187.

[49]  A. Tielens,et al.  Interstellar Depletions and the Life Cycle of Interstellar Dust , 1998 .

[50]  Jr.,et al.  The Global Schmidt law in star forming galaxies , 1997, astro-ph/9712213.

[51]  E. Dwek The Evolution of the Elemental Abundances in the Gas and Dust Phases of the Galaxy , 1997, astro-ph/9707024.

[52]  P. Crowther,et al.  Remarkable spectral variability in WR 104 (WC9): dust condensation in a hostile environment? , 1997 .

[53]  N. Odegard,et al.  A Three-dimensional Decomposition of the Infrared Emission from Dust in the Milky Way , 1997 .

[54]  Kenneth R. Sembach,et al.  INTERSTELLAR ABUNDANCES FROM ABSORPTION-LINE OBSERVATIONS WITH THE HUBBLE SPACE TELESCOPE , 1996 .

[55]  J. Mayo Greenberg,et al.  Approaching the Interstellar Grain Organic Refractory Component , 1995 .

[56]  A. Königl,et al.  A portrait of the torus as a disk-driven hydromagnetic wind , 1995 .

[57]  K. Liffman,et al.  Stochastic evolution of refractory interstellar dust during the chemical evolution of a two-phase interstellar medium , 1989 .

[58]  N. Prantzos,et al.  Nucleosynthesis and evolution of massive stars with mass loss and overshooting , 1986 .

[59]  B. Donn,et al.  Does nucleation theory apply to the formation of refractory circumstellar grains , 1985 .

[60]  E. Dwek,et al.  The evolution of refractory interstellar grains in the solar neighborhood , 1980 .

[61]  B. Tinsley,et al.  Chemical Evolution of Galaxies , 1976 .

[62]  T. Snow The depletion of interstellar elements and the interaction between gas and dust in space , 1975 .

[63]  W. Press,et al.  Remark on the Statistical Significance of Flares in Poisson Count Data , 1974 .