Abundant and species-specific DINE-1 transposable elements in 12 Drosophila genomes

[1]  W. J. Kent,et al.  The UCSC Genome Browser , 2003, Current protocols in bioinformatics.

[2]  Melanie A. Huntley,et al.  Evolution of genes and genomes on the Drosophila phylogeny , 2007, Nature.

[3]  J. Jurka,et al.  Helitrons on a roll: eukaryotic rolling-circle transposons. , 2007, Trends in genetics : TIG.

[4]  Cédric Feschotte,et al.  PIF-like transposons are common in drosophila and have been repeatedly domesticated to generate new host genes. , 2007, Molecular biology and evolution.

[5]  A. Gentles,et al.  Evolutionary dynamics of transposable elements in the short-tailed opossum Monodelphis domestica. , 2007, Genome research.

[6]  D. Barbash,et al.  Evolution of hydra, a Recently Evolved Testis-Expressed Gene with Nine Alternative First Exons in Drosophila melanogaster , 2007, PLoS genetics.

[7]  Cédric Feschotte,et al.  Massive amplification of rolling-circle transposons in the lineage of the bat Myotis lucifugus , 2007, Proceedings of the National Academy of Sciences.

[8]  Michael Ashburner,et al.  Recurrent insertion and duplication generate networks of transposable element sequences in the Drosophila melanogaster genome , 2006, Genome Biology.

[9]  E. Eichler,et al.  Primate segmental duplications: crucibles of evolution, diversity and disease , 2006, Nature Reviews Genetics.

[10]  Matthew D. Dyer,et al.  Human genomic deletions mediated by recombination between Alu elements. , 2006, American journal of human genetics.

[11]  Hsiao-Pei Yang,et al.  Genomewide Comparative Analysis of the Highly Abundant Transposable Element DINE-1 Suggests a Recent Transpositional Burst in Drosophila yakuba , 2006, Genetics.

[12]  P. Capy Classification and nomenclature of retrotransposable elements , 2005, Cytogenetic and Genome Research.

[13]  Casey M. Bergman,et al.  Combined Evidence Annotation of Transposable Elements in Genome Sequences , 2005, PLoS Comput. Biol..

[14]  C. Vieira,et al.  What transposable elements tell us about genome organization and evolution: the case of Drosophila , 2005, Cytogenetic and Genome Research.

[15]  S. Wessler,et al.  DNA-binding specificity of rice mariner-like transposases and interactions with Stowaway MITEs , 2005, Nucleic acids research.

[16]  M. Suyama,et al.  Complex genomic rearrangements lead to novel primate gene function. , 2005, Genome research.

[17]  Dmitri A Petrov,et al.  Genomic Heterogeneity of Background Substitutional Patterns in Drosophila melanogaster , 2005, Genetics.

[18]  Sudhir Kumar,et al.  MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment , 2004, Briefings Bioinform..

[19]  D. Petrov,et al.  Rapid sequence turnover at an intergenic locus in Drosophila. , 2004, Molecular biology and evolution.

[20]  H. Kazazian Mobile Elements: Drivers of Genome Evolution , 2004, Science.

[21]  J. Jurka,et al.  Duplication, coclustering, and selection of human Alu retrotransposons. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Sudhir Kumar,et al.  Temporal patterns of fruit fly (Drosophila) evolution revealed by mutation clocks. , 2003, Molecular biology and evolution.

[23]  K. O'hare,et al.  The pogo transposable element family of Drosophila melanogaster , 1992, Molecular and General Genetics MGG.

[24]  J. Jurka,et al.  Molecular paleontology of transposable elements in the Drosophila melanogaster genome , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[25]  M. G. Kidwell,et al.  Vege and Mar: two novel hAT MITE families from Drosophila willistoni. , 2003, Molecular biology and evolution.

[26]  M. Ashburner,et al.  The transposable elements of the Drosophila melanogaster euchromatin: a genomics perspective , 2002, Genome Biology.

[27]  N. Okada,et al.  LINEs Mobilize SINEs in the Eel through a Shared 3′ Sequence , 2002, Cell.

[28]  Brian Charlesworth,et al.  On the abundance and distribution of transposable elements in the genome of Drosophila melanogaster. , 2002, Molecular biology and evolution.

[29]  Cédric Feschotte,et al.  Plant transposable elements: where genetics meets genomics , 2002, Nature Reviews Genetics.

[30]  P. Deininger,et al.  Mobile Elements in Animal and Plant Genomes , 2002 .

[31]  Alan M. Lambowitz,et al.  Mobile DNA III , 2002 .

[32]  A. Inagaki,et al.  Micron, a microsatellite-targeting transposable element in the rice genome , 2001, Molecular Genetics and Genomics.

[33]  L. Zhang,et al.  DNA-binding activity and subunit interaction of the mariner transposase. , 2001, Nucleic acids research.

[34]  J. Carmichael,et al.  The American Society for Microbiology. , 2001, American clinical laboratory.

[35]  Z. Tu,et al.  Microuli, a family of miniature subterminal inverted-repeat transposable elements (MSITEs): transposition without terminal inverted repeats. , 2001, Molecular biology and evolution.

[36]  J Wilder,et al.  Mobile elements and the genesis of microsatellites in dipterans. , 2001, Molecular biology and evolution.

[37]  Y. Bigot,et al.  The ITR binding domain of the Mariner Mos-1 transposase , 2001, Molecular Genetics and Genomics.

[38]  L. Bachmann,et al.  Evolutionary dynamics of the SGM transposon family in the Drosophila obscura species group. , 2000, Molecular biology and evolution.

[39]  J. Bennetzen,et al.  Structural Domains and Matrix Attachment Regions along Colinear Chromosomal Segments of Maize and Sorghum , 2000, Plant Cell.

[40]  R. Hodgetts,et al.  The characterization of DINE-1, a short, interspersed repetitive element present on chromosome and in the centric heterochromatin of Drosophila melanogaster , 1999, Chromosoma.

[41]  G. Marfany,et al.  GEM, a cluster of repetitive sequences in the Drosophila subobscura genome. , 1999, Gene.

[42]  P. Ronald,et al.  Identification and characterization of 14 transposon-like elements in the noncoding regions of members of the Xa21 family of disease resistance genes in rice , 1998, Molecular and General Genetics MGG.

[43]  N. Okada,et al.  SINEs and LINEs share common 3' sequences: a review. , 1997, Gene.

[44]  M. G. Kidwell,et al.  Transposable elements as sources of variation in animals and plants. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[45]  S. Wessler,et al.  LTR-retrotransposons and MITEs: important players in the evolution of plant genomes. , 1995, Current opinion in genetics & development.

[46]  R. DeSalle,et al.  Drosophila Molecular Phylogenies and Their Uses , 1995 .

[47]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[48]  S. Wessler,et al.  Mobile inverted-repeat elements of the Tourist family are associated with the genes of many cereal grasses. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[49]  J. McDonald Transposable Elements and Evolution , 1993, Contemporary Issues in Genetics and Evolution.

[50]  S. Wessler,et al.  Tourist: a large family of small inverted repeat elements frequently associated with maize genes. , 1992, The Plant cell.

[51]  D. Finnegan,et al.  Eukaryotic transposable elements and genome evolution. , 1989, Trends in genetics : TIG.

[52]  M. Singer SINEs and LINEs: Highly repeated short and long interspersed sequences in mammalian genomes , 1982, Cell.

[53]  S. Jeffery Evolution of Protein Molecules , 1979 .

[54]  T. Jukes CHAPTER 24 – Evolution of Protein Molecules , 1969 .

[55]  H. Munro,et al.  Mammalian protein metabolism , 1964 .