Influences of Hydrogen Micropores and Intermetallic Particles on Fracture Behaviors of Al-Zn-Mg-Cu Aluminum Alloys

[1]  R. Sarpong,et al.  Bio-inspired synthesis of xishacorenes A, B, and C, and a new congener from fuscol† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc02572c , 2019, Chemical science.

[2]  A. Takeuchi,et al.  Diffraction-amalgamated grain boundary tracking for mapping 3D crystallographic orientation and strain fields during plastic deformation , 2016 .

[3]  Xuefeng Tang,et al.  Influence of solution heat treatment on mechanical response and fracture behaviour of aluminium alloy sheets: An experimental study , 2015 .

[4]  P. Sofronis,et al.  Chemomechanical effects on the separation of interfaces occurring during fracture with emphasis on the hydrogen-iron and hydrogen-nickel system , 2015 .

[5]  N. Chawla,et al.  Mechanical properties of intermetallic inclusions in Al 7075 alloys by micropillar compression , 2015 .

[6]  Francesco De Carlo,et al.  Fatigue crack growth in SiC particle reinforced Al alloy matrix composites at high and low R-ratios by in situ X-ray synchrotron tomography , 2014 .

[7]  T. Morgeneyer,et al.  In situ laminography study of three-dimensional individual void shape evolution at crack initiation and comparison with Gurson–Tvergaard–Needleman-type simulations , 2014 .

[8]  S. Pantelakis,et al.  Effect of prior deformation and heat treatment on the corrosion-induced hydrogen trapping in aluminium alloy 2024 , 2014 .

[9]  Kentaro Uesugi,et al.  The True Origin of Ductile Fracture in Aluminum Alloys , 2014, Metallurgical and Materials Transactions A.

[10]  S. Kumar,et al.  A systematic investigation of fracture mechanisms in Al–Si based eutectic alloy—Effect of Si modification , 2013 .

[11]  Xianghui Xiao,et al.  Understanding fatigue crack growth in aluminum alloys by in situ X-ray synchrotron tomography , 2013 .

[12]  E. Maire,et al.  Experimental investigation of void coalescence in a dual phase steel using X-ray tomography , 2013 .

[13]  A. Takeuchi,et al.  Grain boundary tracking: A four-dimensional visualization technique for determining grain boundary geometry via local strain mapping , 2013 .

[14]  E. Maire,et al.  Onset of void coalescence in uniaxial tension studied by continuous X-ray tomography , 2013 .

[15]  Z. Yin,et al.  Intermetallic phase evolution of 7050 aluminum alloy during homogenization , 2012 .

[16]  A. Sherry,et al.  The characterization and interpretation of ductile fracture mechanisms in AL2024-T351 using X-ray and focused ion beam tomography , 2012 .

[17]  K. Hiraoka,et al.  Effect of inclusion/matrix interface cavities on internal-fracture-type rolling contact fatigue life , 2011 .

[18]  M. Rappaz,et al.  Curvature of micropores in Al–Cu alloys: An X-ray tomography study , 2011 .

[19]  May L. Martin,et al.  Interpreting hydrogen-induced fracture surfaces in terms of deformation processes: A new approach , 2011 .

[20]  May L. Martin,et al.  On the formation and nature of quasi-cleavage fracture surfaces in hydrogen embrittled steels , 2011 .

[21]  K. Sivaprasad,et al.  Studies on void coalescence analysis of nanocrystalline cryorolled commercially pure aluminium formed under different stress conditions , 2010 .

[22]  K. Uesugi,et al.  Influence of high-temperature solution treatments on mechanical properties of an Al–Si–Cu aluminum alloy , 2010 .

[23]  K. Uesugi,et al.  Roles of Pre-Existing Hydrogen Micropores on Ductile Fracture , 2009 .

[24]  K. Koyama,et al.  Healing behavior of preexisting hydrogen micropores in aluminum alloys during plastic deformation , 2009 .

[25]  A. Takeuchi,et al.  Growth behavior of hydrogen micropores in aluminum alloys during high-temperature exposure , 2009 .

[26]  I. Sinclair,et al.  Evolution of voids during ductile crack propagation in an aluminium alloy sheet toughness test studied by synchrotron radiation computed tomography , 2008 .

[27]  Andrej Atrens,et al.  Stress corrosion cracking and hydrogen embrittlement of an Al–Zn–Mg–Cu alloy , 2004 .

[28]  E. Maire,et al.  On the competition between particle fracture and particle decohesion in metal matrix composites , 2004 .

[29]  A. Deschamps,et al.  A model for predicting fracture mode and toughness in 7000 series aluminium alloys , 2004 .

[30]  J. Griffiths,et al.  Damage by eutectic particle cracking in aluminum casting alloys A356/357 , 2003 .

[31]  Qigui Wang Microstructural effects on the tensile and fracture behavior of aluminum casting alloys A356/357 , 2003 .

[32]  E. A. Starke,et al.  Progress in structural materials for aerospace systems , 2003 .

[33]  Petros Athanasios Sofronis,et al.  On the effect of hydrogen on plastic instabilities in metals , 2003 .

[34]  Kevin Barraclough,et al.  I and i , 2001, BMJ : British Medical Journal.

[35]  E. Kaxiras,et al.  Hydrogen-enhanced local plasticity in aluminum: an ab initio study. , 2001, Physical review letters.

[36]  W. S. Miller,et al.  Recent development in aluminium alloys for aerospace applications , 2000 .

[37]  Ian M. Robertson,et al.  The effect of hydrogen on dislocation dynamics , 1999 .

[38]  J. Scully,et al.  The diffusion and trapping of hydrogen in high purity aluminum , 1998 .

[39]  K. H. Rendigs Aluminium Structures Used in Aerospace - Status and Prospects- , 1997 .

[40]  H. Flower,et al.  Hydrogen embrittlement and trapping in Al6%Zn-3%Mg , 1980 .

[41]  I. Bernstein,et al.  The role of microstructure in hydrogen-assisted fracture of 7075 aluminum , 1979 .

[42]  A. Götte,et al.  Metall , 1897 .

[43]  W. Marsden I and J , 2012 .

[44]  Efthimios Kaxiras,et al.  Hydrogen-Enhanced Local Plasticity in Aluminum , 2001 .

[45]  D. Lloyd Particle reinforced aluminium and magnesium matrix composites , 1994 .