Flexible, three-dimensional ordered macroporous TiO2 electrode with enhanced electrode–electrolyte interaction in high-power Li-ion batteries

[1]  Ali Ghorbani Kashkooli,et al.  Implementing an in-situ carbon network in Si/reduced graphene oxide for high performance lithium-ion battery anodes , 2016 .

[2]  Zhongwei Chen,et al.  Evidence of covalent synergy in silicon–sulfur–graphene yielding highly efficient and long-life lithium-ion batteries , 2015, Nature Communications.

[3]  D. Zhao,et al.  Graphitic Carbon Conformal Coating of Mesoporous TiO2 Hollow Spheres for High-Performance Lithium Ion Battery Anodes. , 2015, Journal of the American Chemical Society.

[4]  Xiaobo Ji,et al.  Carbon dots supported upon N-doped TiO2 nanorods applied into sodium and lithium ion batteries , 2015 .

[5]  M. Biener,et al.  Structural optimization of 3D porous electrodes for high-rate performance lithium ion batteries. , 2015, ACS nano.

[6]  D. Bresser,et al.  Nanocrystalline TiO2(B) as Anode Material for Sodium-Ion Batteries , 2015 .

[7]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[8]  Qiuyun Ouyang,et al.  Three-dimensional hierarchical MoS2 nanoflake array/carbon cloth as high-performance flexible lithium-ion battery anodes , 2014 .

[9]  Bin Wang,et al.  Conformal coating of TiO2 nanorods on a 3-D CNT scaffold by using a CNT film as a nanoreactor: a free-standing and binder-free Li-ion anode , 2014 .

[10]  S. Selladurai,et al.  Controlled growth of spinel NiCo2O4 nanostructures on carbon cloth as a superior electrode for supercapacitors , 2014 .

[11]  Hyun Wook Kang,et al.  Flexible supercapacitor fabrication by room temperature rapid laser processing of roll-to-roll printed metal nanoparticle ink for wearable electronics application , 2014 .

[12]  U. Paik,et al.  3D cross-linked nanoweb architecture of binder-free TiO(2) electrodes for lithium ion batteries. , 2013, ACS applied materials & interfaces.

[13]  Chunzhen Yang,et al.  Three-dimensional ordered macroporous MnO2/carbon nanocomposites as high-performance electrodes for asymmetric supercapacitors. , 2013, Physical chemistry chemical physics : PCCP.

[14]  Xingcheng Xiao,et al.  Multifunctional TiO2-C/MnO2 core-double-shell nanowire arrays as high-performance 3D electrodes for lithium ion batteries. , 2013, Nano letters.

[15]  Xingcheng Xiao,et al.  Hierarchical Li4Ti5O12-TiO2 composite microsphere consisting of nanocrystals for high power Li-ion batteries , 2013 .

[16]  Huanlei Wang,et al.  Nanocrystalline anatase TiO2: a new anode material for rechargeable sodium ion batteries. , 2013, Chemical communications.

[17]  B. Scrosati,et al.  Black anatase titania enabling ultra high cycling rates for rechargeable lithium batteries , 2013 .

[18]  J. Chen,et al.  Carbon inverse opal entrapped with electrode active nanoparticles as high-performance anode for lithium-ion batteries , 2013, Scientific Reports.

[19]  Alexander Eychmüller,et al.  A Flexible TiO2(B)‐Based Battery Electrode with Superior Power Rate and Ultralong Cycle Life , 2013, Advanced materials.

[20]  M. Deng,et al.  Three-dimensionally ordered macroporous Cu2O/Ni inverse opal electrodes for electrochemical supercapacitors. , 2013, Physical chemistry chemical physics : PCCP.

[21]  A. Rai,et al.  Simple synthesis and particle size effects of TiO2 nanoparticle anodes for rechargeable lithium ion batteries , 2013 .

[22]  Jie Lian,et al.  Flexible free-standing graphene–TiO2 hybrid paper for use as lithium ion battery anode materials , 2013 .

[23]  Matthew T. Cole,et al.  Flexible Electronics: The Next Ubiquitous Platform , 2012, Proceedings of the IEEE.

[24]  Yongyao Xia,et al.  Ti-based compounds as anode materials for Li-ion batteries , 2012 .

[25]  Fei Wei,et al.  High‐Performance Energy‐Storage Architectures from Carbon Nanotubes and Nanocrystal Building Blocks , 2012, Advanced materials.

[26]  Young‐Jun Kim,et al.  Preparation of carbon-coated TiO2 nanostructures for lithium-ion batteries , 2011 .

[27]  Paul V. Braun,et al.  Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. , 2011, Nature nanotechnology.

[28]  P. Bruce,et al.  Nanomaterials for rechargeable lithium batteries. , 2008, Angewandte Chemie.

[29]  S. Lam Po Tang,et al.  Recent developments in flexible wearable electronics for monitoring applications , 2007 .

[30]  M. Wagemaker,et al.  Large impact of particle size on insertion reactions. A case for anatase Li(x)TiO2. , 2007, Journal of the American Chemical Society.

[31]  Robert Dominko,et al.  Carbon nanocoatings on active materials for Li-ion batteries , 2007 .

[32]  Andre K. Geim,et al.  Raman spectrum of graphene and graphene layers. , 2006, Physical review letters.

[33]  Justin C. Lytle,et al.  Photonic Crystal Structures as a Basis for a Three‐Dimensionally Interpenetrating Electrochemical‐Cell System , 2006 .

[34]  K. Poeppelmeier,et al.  Erratum: Three-dimensionally ordered macroporous Li4Ti 5O12: Effect of wall structure on electrochemical properties (Chemistry of Materials (2006) 18 (482-489)) , 2006 .

[35]  Y. Matsumoto,et al.  Erratum: Solid-state electrochemical micromachining (Chemistry of Materials (2005) 17 (1930-1932)) , 2006 .

[36]  L. Kavan,et al.  Lithium Insertion into Anatase Inverse Opal , 2004 .

[37]  Ladislav Kavan,et al.  Surfactant-Templated TiO2 (Anatase): Characteristic Features of Lithium Insertion Electrochemistry in Organized Nanostructures , 2000 .