Models, Processes and Algorithms: Towards a Simulation Toolkit

This chapter begins the specification of the ideal features of a toolkit for social simulation, starting from a consideration of the standard methodology for simulation research. Several essential components, commonly used in social science simulation research, are identified and it is argued that implementations of these will need to be included in the toolkit. Additional modules, providing graphical output, scheduling, random number generation and parameter editing are also required.

[1]  Michael J. Prietula,et al.  Design Versus Cognition: The interaction of agent cognition and organizational design on organizational performance , 1998, J. Artif. Soc. Soc. Simul..

[2]  A. Newell Unified Theories of Cognition , 1990 .

[3]  Klaus G. Troitzsch,et al.  Social Science Simulation — Origins, Prospects, Purposes , 1997 .

[4]  Kathleen M. Carley,et al.  Radar‐soar: Towards an artificial organization composed of intelligent agents* , 1995 .

[5]  A. Harding,et al.  Dynamic microsimulation models: problems and prospects , 1991 .

[6]  G. Nigel Gilbert Simulation as a Research Strategy , 1995, Social Science Microsimulation.

[7]  Peter Tyson,et al.  Artificial societies , 1997 .

[8]  R. Hegselmann,et al.  Simulating Social Phenomena , 1997 .

[9]  Jörg P. Müller,et al.  The Design of Intelligent Agents , 1996, Lecture Notes in Computer Science.

[10]  Gn Gilbert,et al.  Simulating societies: an introduction , 1994 .

[11]  Nicholas R. Jennings,et al.  Intelligent agents: theory and practice , 1995, The Knowledge Engineering Review.

[12]  C. V. West,et al.  Modeling Prehistoric Agricultural Productivity in Southwestern Colorado: A Gis Approach , 1997 .

[13]  Zbigniew Michalewicz,et al.  Genetic Algorithms + Data Structures = Evolution Programs , 1996, Springer Berlin Heidelberg.

[14]  Jorg P. Muller,et al.  The Design of Intelligent Agents: A Layered Approach , 1996 .

[15]  Michael Möhring Social Science Multilevel Simulation with MIMOSE , 1995, Social Science Microsimulation.

[16]  Klaus G. Troitzsch Multilevel Simulation , 1995, Social Science Microsimulation.

[17]  Rainer Hegselmann Understanding Social Dynamics: The Cellular Automata Approach , 1995, Social Science Microsimulation.

[18]  Jim Doran,et al.  From computer simulation to artificial societies , 1997 .

[19]  John H. Holland,et al.  Adaptation in Natural and Artificial Systems: An Introductory Analysis with Applications to Biology, Control, and Artificial Intelligence , 1992 .

[20]  Klaus G. Troitzsch,et al.  Modelling and simulation in the social sciences from the philosophy of science point of view , 1996 .

[21]  Kyriakos M. Kontopoulos The logics of social structure: Bibliography , 1993 .

[22]  Allen Newell,et al.  SOAR: An Architecture for General Intelligence , 1987, Artif. Intell..

[23]  Nicholas R. Jennings,et al.  Foundations of distributed artificial intelligence , 1996, Sixth-generation computer technology series.

[24]  Bernard P. Zeigler,et al.  Theory of Modelling and Simulation , 1979, IEEE Transactions on Systems, Man and Cybernetics.

[25]  Bibb Latané,et al.  Dynamic Social Impact , 1996 .

[26]  Tim Finin,et al.  KQML - A Language and Protocol for Knowledge and Information Exchange , 1994 .

[27]  Nigel Gilbert,et al.  Simulating Societies : The Computer Simulation of Social Phenomena , 1995 .

[28]  Kevin Swingler,et al.  Applying neural networks - a practical guide , 1996 .

[29]  Klaus G. Troitzsch,et al.  Social Science Microsimulation , 1997 .

[30]  Adelinde M. Uhrmacher,et al.  Concepts of object- and agent-oriented simulation , 1997 .

[31]  Lawrence Davis,et al.  Genetic Algorithms and Simulated Annealing , 1987 .

[32]  Adelinde M. Uhrmacher,et al.  Object-Oriented and Agent-Oriented Simulation: Implications for Social Science Application , 1995, Social Science Microsimulation.

[33]  Thomas C. Schelling,et al.  Dynamic models of segregation , 1971 .