Advanced light trapping scheme in decoupled front and rear textured thin-film silicon solar cells

[1]  Bofei Liu,et al.  High efficiency and high open-circuit voltage quadruple-junction silicon thin film solar cells for future electronic applications , 2017 .

[2]  K. Yoshikawa,et al.  Silicon heterojunction solar cell with interdigitated back contacts for a photoconversion efficiency over 26% , 2017, Nature Energy.

[3]  Takuya Matsui,et al.  Stabilized 14.0%-efficient triple-junction thin-film silicon solar cell , 2016 .

[4]  C. Battaglia,et al.  High-efficiency crystalline silicon solar cells: status and perspectives , 2016 .

[5]  Miro Zeman,et al.  Organometallic halide perovskite/barium di-silicide thin-film double-junction solar cells , 2016, SPIE Photonics Europe.

[6]  M. Zeman,et al.  Decoupled front/back dielectric textures for flat ultra-thin c-Si solar cells. , 2016, Optics express.

[7]  M. Zeman,et al.  Nano‐cones on micro‐pyramids: modulated surface textures for maximal spectral response and high‐efficiency solar cells , 2015 .

[8]  Jian Sun,et al.  High efficiency triple junction thin film silicon solar cells with optimized electrical structure , 2015 .

[9]  Christophe Ballif,et al.  Highly transparent modulated surface textured front electrodes for high‐efficiency multijunction thin‐film silicon solar cells , 2015 .

[10]  Takashi Koida,et al.  High-efficiency thin-film silicon solar cells realized by integrating stable a-Si:H absorbers into improved device design , 2015 .

[11]  Y. Takeuchi,et al.  High-efficiency microcrystalline silicon solar cells on honeycomb textured substrates grown with high-rate VHF plasma-enhanced chemical vapor deposition , 2015 .

[12]  T. Suemasu Exploring the possibility of semiconducting BaSi2 for thin-film solar cell applications , 2015 .

[13]  Bernd Rech,et al.  Quadruple-junction solar cells and modules based on amorphous and microcrystalline silicon with high stable efficiencies , 2015 .

[14]  Sang Il Seok,et al.  High-performance photovoltaic perovskite layers fabricated through intramolecular exchange , 2015, Science.

[15]  C. Ballif,et al.  Light management in thin film silicon solar cells , 2015 .

[16]  M. Stuckelberger,et al.  Amorphous silicon–germanium for triple and quadruple junction thin-film silicon based solar cells , 2015 .

[17]  Miro Zeman,et al.  Thin-film silicon-based quadruple junction solar cells approaching 20% conversion efficiency , 2014 .

[18]  Naoteru Matsubara,et al.  Achievement of More Than 25% Conversion Efficiency With Crystalline Silicon Heterojunction Solar Cell , 2014, IEEE Journal of Photovoltaics.

[19]  M. Zeman,et al.  The Nature and the Kinetics of Light-Induced Defect Creation in Hydrogenated Amorphous Silicon Films and Solar Cells , 2014, IEEE Journal of Photovoltaics.

[20]  Do Yun Kim,et al.  Quadruple-junction thin-film silicon-based solar cells with high open-circuit voltage , 2014 .

[21]  M. Zeman,et al.  Enhancing the driving field for plasmonic nanoparticles in thin-film solar cells. , 2014, Optics express.

[22]  Miro Zeman,et al.  Full‐wave optoelectrical modeling of optimized flattened light‐scattering substrate for high efficiency thin‐film silicon solar cells , 2014 .

[23]  Shanhui Fan,et al.  Light management for photovoltaics using high-index nanostructures. , 2014, Nature materials.

[24]  Angelo Bozzola,et al.  How to assess light trapping structures versus a Lambertian Scatterer for solar cells? , 2014, Optics express.

[25]  M. Zeman,et al.  Experimental Demonstration of 4n2 Classical Absorption Limit in Nanotextured Ultrathin Solar Cells with Dielectric Omnidirectional Back Reflector , 2014 .

[26]  M. Zeman,et al.  Modelling of thin-film silicon solar cells , 2013 .

[27]  Soo-Hyun Kim,et al.  Remarkable progress in thin-film silicon solar cells using high-efficiency triple-junction technology , 2013 .

[28]  Jianying Zhou,et al.  Deterministic quasi-random nanostructures for photon control , 2013, Nature Communications.

[29]  P. Babál,et al.  Micro-textures for efficient light trapping and improved electrical performance in thin-film nanocrystalline silicon solar cells , 2013 .

[30]  Christophe Ballif,et al.  Comparison of amorphous silicon absorber materials: Light-induced degradation and solar cell efficiency , 2013 .

[31]  M. Kondo,et al.  Microcrystalline Silicon Solar Cells with 10.5% Efficiency Realized by Improved Photon Absorption via Periodic Textures and Highly Transparent Conductive Oxide , 2013 .

[32]  C. Ballif,et al.  Record Infrared Internal Quantum Efficiency in Silicon Heterojunction Solar Cells With Dielectric/Metal Rear Reflectors , 2013, IEEE Journal of Photovoltaics.

[33]  H. Herzig,et al.  Plasmonic silicon solar cells: impact of material quality and geometry. , 2013, Optics express.

[34]  Kimihiko Saito,et al.  High‐efficiency thin‐film silicon solar cells with improved light‐soaking stability , 2013 .

[35]  H. Herzig,et al.  Angular behavior of the absorption limit in thin film silicon solar cells , 2013, 1303.2835.

[36]  H. Herzig,et al.  Limit of light coupling strength in solar cells , 2013, 1303.2833.

[37]  M. Zeman,et al.  The role of oxide interlayers in back reflector configurations for amorphous silicon solar cells , 2013 .

[38]  M. Kondo,et al.  Relationship between the cell thickness and the optimum period of textured back reflectors in thin-film microcrystalline silicon solar cells , 2013 .

[39]  Diego Caratelli,et al.  3‐D optical modeling of thin‐film silicon solar cells on diffraction gratings , 2013 .

[40]  Christophe Ballif,et al.  Thin-film silicon triple-junction solar cell with 12.5% stable efficiency on innovative flat light-scattering substrate , 2012 .

[41]  Ali Naqavi,et al.  Diffraction and absorption enhancement from textured back reflectors of thin film solar cells , 2012 .

[42]  M. Zeman,et al.  Plasmonic light trapping in thin-film silicon solar cells with improved self-assembled silver nanoparticles. , 2012, Nano letters.

[43]  Yi Cui,et al.  Light trapping in solar cells: can periodic beat random? , 2012, ACS nano.

[44]  Yi Cui,et al.  Absorption enhancement in ultrathin crystalline silicon solar cells with antireflection and light-trapping nanocone gratings. , 2012, Nano letters.

[45]  Christophe Ballif,et al.  Multiscale transparent electrode architecture for efficient light management and carrier collection in solar cells. , 2012, Nano letters.

[46]  M. Meier,et al.  Plasmonic reflection grating back contacts for microcrystalline silicon solar cells , 2011 .

[47]  B. Rech,et al.  Large area PECVD of a-Si:H/a-Si:H tandem solar cells , 2011 .

[48]  M. Zeman,et al.  Angular resolved scattering measurements of nano-textured substrates in a broad wavelength range , 2011 .

[49]  S. Guha,et al.  Innovative dual function nc-SiOx:H layer leading to a >16% efficient multi-junction thin-film silicon solar cell , 2011 .

[50]  A. Luque,et al.  Upper limits to absorption enhancement in thick solar cells using diffraction gratings , 2011 .

[51]  Rana Biswas,et al.  Nano-crystalline silicon solar cell architecture with absorption at the classical 4n(2) limit. , 2011, Optics express.

[52]  Ali Naqavi,et al.  Resonances and absorption enhancement in thin film silicon solar cells with periodic interface texture , 2011 .

[53]  C. Battaglia,et al.  Nanoimprint lithography for high-efficiency thin-film silicon solar cells. , 2011, Nano letters.

[54]  Zongfu Yu,et al.  Angular constraint on light-trapping absorption enhancement in solar cells , 2010, 1009.5453.

[55]  S. Fan,et al.  Fundamental limit of light trapping in grating structures. , 2010, Optics express.

[56]  Zongfu Yu,et al.  Limit of nanophotonic light-trapping in solar cells , 2010, 2010 35th IEEE Photovoltaic Specialists Conference.

[57]  Christophe Ballif,et al.  Photocurrent increase in n-i-p thin film silicon solar cells by guided mode excitation via grating coupler , 2010 .

[58]  Ihsanul Afdi Yunaz,et al.  ZnO Films with Very High Haze Value for Use as Front Transparent Conductive Oxide Films in Thin-Film Silicon Solar Cells , 2010 .

[59]  Janez Krč,et al.  Modulated surface textures using zinc‐oxide films for solar cells applications , 2010 .

[60]  H. Atwater,et al.  Improved red-response in thin film a-Si:H solar cells with soft-imprinted plasmonic back reflectors , 2009 .

[61]  C. Ballif,et al.  Influence of the ZnO buffer on the guided mode structure in Si/ZnO/Ag multilayers , 2009 .

[62]  Christophe Ballif,et al.  TCOs for nip thin film silicon solar cells , 2009 .

[63]  Bernd Rech,et al.  Recent development on surface-textured ZnO:Al films prepared by sputtering for thin-film solar cell application , 2008 .

[64]  Arvind Shah,et al.  Relation between substrate surface morphology and microcrystalline silicon solar cell performance , 2008 .

[65]  H. Fujiwara,et al.  Reduction of Optical Loss in Hydrogenated Amorphous Silicon/Crystalline Silicon Heterojunction Solar Cells by High-Mobility Hydrogen-Doped In2O3 Transparent Conductive Oxide , 2008 .

[66]  T. Suezaki,et al.  Thin film silicon solar cell and module , 2005, Conference Record of the Thirty-first IEEE Photovoltaic Specialists Conference, 2005..

[67]  David B. Davidson,et al.  Computational Electromagnetics for RF and Microwave Engineering , 2005 .

[68]  Hiroyuki Fujiwara,et al.  Effects of carrier concentration on the dielectric function of ZnO:Ga and In 2 O 3 : Sn studied by spectroscopic ellipsometry: Analysis of free-carrier and band-edge absorption , 2005 .

[69]  Shanhui Fan,et al.  Temporal coupled-mode theory and the presence of non-orthogonal modes in lossless multimode cavities , 2004 .

[70]  J. Springer,et al.  Absorption loss at nanorough silver back reflector of thin-film silicon solar cells , 2004 .

[71]  Martin A. Green,et al.  Lambertian light trapping in textured solar cells and light‐emitting diodes: analytical solutions , 2002 .

[72]  Thomas K. Gaylord,et al.  Determination of guided and leaky modes in lossless and lossy planar multilayer optical waveguides: reflection pole method and wavevector density method , 1999 .

[73]  M. Green,et al.  19.8% efficient “honeycomb” textured multicrystalline and 24.4% monocrystalline silicon solar cells , 1998 .

[74]  E. Yablonovitch,et al.  Limiting efficiency of silicon solar cells , 1984, IEEE Transactions on Electron Devices.

[75]  S. Nishikawa,et al.  Thickness dependence of staebler-wronski effect in a-Si:H , 1983 .

[76]  S. Shakir,et al.  Method of poles for multilayer thin-film waveguides , 1982 .

[77]  D. Merewether,et al.  On Implementing a Numeric Huygen's Source Scheme in a Finite Difference Program to Illuminate Scattering Bodies , 1980, IEEE Transactions on Nuclear Science.

[78]  D. L. Staebler,et al.  Optically induced conductivity changes in discharge‐produced hydrogenated amorphous silicon , 1980 .

[79]  T. Weiland A discretization model for the solution of Maxwell's equations for six-component fields , 1977 .

[80]  M. Zeman,et al.  3-D optical modeling of single and multi-junction thin-film silicon solar cells on gratings , 2012 .

[81]  W. Ritz Über eine neue Methode zur Lösung gewisser Variationsprobleme der mathematischen Physik. , 1909 .