Scalar Field Analysis over Point Cloud Data

Given a real-valued function f defined over some metric space $\mathbb{X}$, is it possible to recover some structural information about f from the sole information of its values at a finite set $L\subseteq\mathbb{X}$ of sample points, whose locations are only known through their pairwise distances in $\mathbb{X}$? We provide a positive answer to this question. More precisely, taking advantage of recent advances on the front of stability for persistence diagrams, we introduce a novel algebraic construction, based on a pair of nested families of simplicial complexes built on top of the point cloud L, from which the persistence diagram of f can be faithfully approximated. We derive from this construction a series of algorithms for the analysis of scalar fields from point cloud data. These algorithms are simple and easy to implement, they have reasonable complexities, and they come with theoretical guarantees. To illustrate the genericity and practicality of the approach, we also present some experimental results obtained in various applications, ranging from clustering to sensor networks.

[1]  I. Holopainen Riemannian Geometry , 1927, Nature.

[2]  Leonidas J. Guibas,et al.  Kinetic data structures: a state of the art report , 1998 .

[3]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[4]  J. Tenenbaum,et al.  A global geometric framework for nonlinear dimensionality reduction. , 2000, Science.

[5]  Herbert Edelsbrunner,et al.  Hierarchical morse complexes for piecewise linear 2-manifolds , 2001, SCG '01.

[6]  Dorin Comaniciu,et al.  Mean Shift: A Robust Approach Toward Feature Space Analysis , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[8]  Frédéric Chazal,et al.  Molecular shape analysis based upon the morse-smale complex and the connolly function , 2002, SCG '03.

[9]  Jennifer C. Hou,et al.  Wireless sensor networks , 2004, IEEE Wirel. Commun..

[10]  Leonidas J. Guibas,et al.  A Barcode Shape Descriptor for Curve Point Cloud Data , 2022 .

[11]  Afra Zomorodian,et al.  Computing Persistent Homology , 2004, SCG '04.

[12]  Bernd Hamann,et al.  A topological hierarchy for functions on triangulated surfaces , 2004, IEEE Transactions on Visualization and Computer Graphics.

[13]  Bernd Hamann,et al.  Topology-based simplification for feature extraction from 3D scalar fields , 2005, VIS 05. IEEE Visualization, 2005..

[14]  David Cohen-Steiner,et al.  Stability of Persistence Diagrams , 2005, Discret. Comput. Geom..

[15]  Bernd Hamann,et al.  A topological approach to simplification of three-dimensional scalar functions , 2006, IEEE Transactions on Visualization and Computer Graphics.

[16]  Pascucci,et al.  A topological approach to simplification of three-dimensional scalar fields , 2006 .

[17]  Frédéric Chazal,et al.  A Sampling Theory for Compact Sets in Euclidean Space , 2006, SCG '06.

[18]  David Cohen-Steiner,et al.  Vines and vineyards by updating persistence in linear time , 2006, SCG '06.

[19]  H. Edelsbrunner,et al.  Persistence-sensitive simplification of functions on 2-manlfolds , 2006, SoCG 2006.

[20]  Valerio Pascucci,et al.  Persistence-sensitive simplification functions on 2-manifolds , 2006, SCG '06.

[21]  Jie Gao,et al.  Shape Segmentation and Applications in Sensor Networks , 2007, IEEE INFOCOM 2007 - 26th IEEE International Conference on Computer Communications.

[22]  Tamal K. Dey,et al.  Stability of Critical Points with Interval Persistence , 2007, Discret. Comput. Geom..

[23]  Leonidas J. Guibas,et al.  Reconstruction Using Witness Complexes , 2007, SODA '07.

[24]  Frédéric Chazal,et al.  Stability and Computation of Topological Invariants of Solids in ${\Bbb R}^n$ , 2007, Discret. Comput. Geom..

[25]  Stephen Smale,et al.  Finding the Homology of Submanifolds with High Confidence from Random Samples , 2008, Discret. Comput. Geom..

[26]  Steve Oudot,et al.  Towards persistence-based reconstruction in euclidean spaces , 2007, SCG '08.

[27]  Leonidas J. Guibas,et al.  Geodesic Delaunay triangulation and witness complex in the plane , 2008, SODA '08.

[28]  D. Morozov,et al.  Persistence-sensitive simplication of functions on surfaces in linear time , 2009 .

[29]  Leonidas J. Guibas,et al.  A concise and provably informative multi-scale signature based on heat diffusion , 2009 .

[30]  Leonidas J. Guibas,et al.  Gromov‐Hausdorff Stable Signatures for Shapes using Persistence , 2009, Comput. Graph. Forum.

[31]  Leonidas J. Guibas,et al.  Proximity of persistence modules and their diagrams , 2009, SCG '09.

[32]  Leonidas J. Guibas,et al.  Analysis of scalar fields over point cloud data , 2009, SODA.

[33]  David Cohen-Steiner,et al.  Persistent homology for kernels, images, and cokernels , 2009, SODA.

[34]  Leonidas J. Guibas,et al.  Persistence-based segmentation of deformable shapes , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition - Workshops.

[35]  Davide Brunelli,et al.  Wireless Sensor Networks , 2012, Lecture Notes in Computer Science.

[36]  Leonidas J. Guibas,et al.  Persistence-Based Clustering in Riemannian Manifolds , 2013, JACM.

[37]  R. Ho Algebraic Topology , 2022 .