18–40-GHz Beam-Shaping/Steering Phased Antenna Array System Using Fermi Antenna

This paper concerns 18-40 GHz 1times 16 beam shaping and 1times 8 beam steering phased antenna arrays (PAAs) realized on a single low-cost printed circuit board substrate. The system consists of a wideband power divider with amplitude taper for sidelobe suppression, wideband microstrip-to-slotline transition, a low-cost true time piezoelectric transducer (PET)-controlled phase shifter, and wideband Fermi antennas with corrugations along the sides. A coplanar stripline is used under a PET-controlled phase shifter, which can generate 50% more phase shift compared to the perturbation on microstrip lines previously published. The systems are fabricated using electro-fine-forming microfabrication technology. Measured return loss is better than 10 dB from 18 to 40 GHz for both the beam-shaping and beam-steering PAAs. The beam-shaping PAA has a 12deg 3-dB beamwidth broadening range. The sidelobe ratios (SLRs) are 27, 23, and 20 dB at 20, 30, and 40 GHz, respectively, without perturbation. The SLRs are 20, 16, and 15 dB at 20, 30, and 40 GHz with maximum perturbation. The beam-steering PAA has a 36deg (-17deg to +19deg ) beam-scanning range measured at 30 GHz.

[1]  R. Kaul,et al.  Microwave engineering , 1989, IEEE Potentials.

[2]  J.U.I. Syed Beam shaping by moving the phase center of array antenna , 1998, ICMMT'98. 1998 International Conference on Microwave and Millimeter Wave Technology. Proceedings (Cat. No.98EX106).

[3]  Yongxi Qian,et al.  A broadband uniplanar microstrip-to-CPS transition , 1997, Proceedings of 1997 Asia-Pacific Microwave Conference.

[4]  Joakim F. Johansson,et al.  Slotline Antennas for Millimeter and Submillimeter Wavelengths , 1990, 1990 20th European Microwave Conference.

[5]  Ieee Microwave Theory,et al.  Quasioptical systems : Gaussian beam quasioptical propagation and applications , 1998 .

[6]  K. Sawaya,et al.  Broadband FDTD analysis of Fermi antenna with narrow width substrate , 2003, IEEE Antennas and Propagation Society International Symposium. Digest. Held in conjunction with: USNC/CNC/URSI North American Radio Sci. Meeting (Cat. No.03CH37450).

[7]  K. Mizuno,et al.  A mm-wave tapered slot antenna with improved radiation pattern , 1997, 1997 IEEE MTT-S International Microwave Symposium Digest.

[8]  K. S. Yngvesson,et al.  The tapered slot antenna-a new integrated element for millimeter-wave applications , 1989 .

[9]  Lu Yang,et al.  Ka-Band True Time Delay E-plane Beam Scanning and Broadening Phased Array System using Antipodal Elliptically-Tapered Slot Antennas , 2006, 2006 IEEE Antennas and Propagation Society International Symposium.

[10]  A. Mase,et al.  Development of Low-Loss Millimeter-Wave Antennas Using Electro-Fine-Forming Fabrication , 2006, 2006 Joint 31st International Conference on Infrared Millimeter Waves and 14th International Conference on Teraherz Electronics.

[11]  Gabriel M. Rebeiz,et al.  Tapered slotline antennas at 802 GHz , 1993 .

[12]  C.T. Rodenbeck,et al.  Ultra-wideband low-cost phased-array radars , 2005, IEEE Transactions on Microwave Theory and Techniques.

[13]  Kai Chang,et al.  Ultra wideband 8 to 40 GHz beam scanning phased array using antipodal exponentially-tapered slot antennas , 2004, 2004 IEEE MTT-S International Microwave Symposium Digest (IEEE Cat. No.04CH37535).

[14]  K. Sawaya,et al.  Design of narrow-width Fermi antenna with circular radiation pattern , 2004, IEEE Antennas and Propagation Society Symposium, 2004..

[15]  Calvin Domier,et al.  True time phased antenna array systems based on nonlinear delay line technology , 2001, APMC 2001. 2001 Asia-Pacific Microwave Conference (Cat. No.01TH8577).

[16]  R.B. Dybdal,et al.  Beam broadening for active aperture antennas , 1989, Digest on Antennas and Propagation Society International Symposium.

[17]  Sang-Gyu Kim,et al.  Time-delay phase shifter controlled by piezoelectric transducer on coplanar waveguide , 2003, IEEE Microwave and Wireless Components Letters.