Probability density functions: From porosities to fatigue lifetime

Abstract This paper proposes a novel method to establish and identify a probability density function characterizing the fatigue lifetime. The method is initiated with a quantitative analysis of the microstructure of the material, which provides the initial probability distribution of defects. After identifying a given probability density function of defects, one can transport it into a lifetime probability density function using a growth law involving a measure of the loading over a cycle. Several parameters of the growth law are finally estimated from a given set of fatigue experiments on specimens and several techniques are discussed. The method is applied on real defect observations and lifetime data. The estimated lifetimes using the novel technique is of similar quality with standard estimation providing the probability density function of lifetime as an additional output. This output can be used directly as an input in a stress–strength interference method.

[1]  Eric Charkaluk,et al.  A computational approach to thermomechanical fatigue , 2004 .

[2]  Frédéric Feyel,et al.  Structural calculation and lifetime-prediction in thermomechanical fatigue of engine components , 2002 .

[3]  Drew V. Nelson,et al.  Evaluation of an energy-based approach and a critical plane approach for predicting constant amplitude multiaxial fatigue life , 2000 .

[4]  A. Samuel,et al.  Effect of alloying elements on the segregation and dissolution of CuAl2 phase in Al-Si-Cu 319 alloys , 2003 .

[5]  Yukio Takahashi,et al.  Thermal Fatigue Behavior of a SUS304 Pipe Under Longitudinal Cyclic Movement of Axial Temperature Distribution , 1996 .

[6]  F. Samuel,et al.  Effect of solution heat treatment and additives on the microstructure of Al-Si (A413.1) automotive alloys , 2003 .

[7]  Stéphane Chapuliot,et al.  Crack initiation under thermal fatigue: An overview of CEA experience: Part II (of II): Application of various criteria to biaxial thermal fatigue tests and a first proposal to improve the estimation of the thermal fatigue damage , 2009 .

[8]  A. Fatemi,et al.  A CRITICAL PLANE APPROACH TO MULTIAXIAL FATIGUE DAMAGE INCLUDING OUT‐OF‐PHASE LOADING , 1988 .

[9]  Jarir Aktaa,et al.  Microcrack propagation and fatigue lifetime under non-proportional multiaxial cyclic loading , 2003 .

[10]  F. Samuel,et al.  Effect of Mg and Cu additions on the microstructural characteristics and tensile properties of Sr-modified Al-Si eutectic alloys , 2002 .

[11]  John L. Campbell,et al.  The concept of net shape for castings , 2000 .

[12]  Fabien Szmytka,et al.  TMF–LCF life assessment of a Lost Foam Casting A319 aluminum alloy , 2013 .

[13]  F. Samuel,et al.  Effect of Solution Heat Treatment and Additives on the Microstructure of Al – Si (A413.1) Automotive Alloys , 2004 .

[14]  Fabien Szmytka,et al.  Behavior, damage and fatigue life assessment of lost foam casting aluminum alloys under thermo-mechanical fatigue conditions , 2010 .

[15]  Darrell F. Socie,et al.  Multiaxial Fatigue Damage Models , 1987 .

[16]  H. Maier,et al.  Precipitate effects on the mechanical behavior of aluminum copper alloys: Part II. Modeling , 2005 .

[17]  Michael J. Verrilli,et al.  Thermomechanical Fatigue Behavior of Materials , 1993 .

[18]  Henk G. Merkus,et al.  Particle Size Measurements: Fundamentals, Practice, Quality , 2009 .

[19]  A. Varvani-Farahani,et al.  Ratcheting assessment of steel alloys under uniaxial loading: a parametric model versus hardening rule of Bower , 2013 .

[20]  Thermomechanical fatigue design of aluminium components , 2002 .

[21]  T. Bui-Quoc,et al.  Fatigue Life Parameter for Type 304 Stainless Steel Under Biaxial-Tensile Loading at Elevated Temperature , 1999 .

[22]  Trevor C. Lindley,et al.  Statistical modeling of microstructure and defect population effects on the fatigue performance of cast A356-T6 automotive components , 2006 .

[23]  Stéphane Chapuliot,et al.  A computational lifetime prediction of a thermal shock experiment. Part II: discussion on difference fatigue criteria , 2006 .

[24]  Andreas Fischersworring-Bunk,et al.  Cylinder Heads for High Power Gasoline Engines - Thermomechanical Fatigue Life Prediction , 2006 .

[25]  H. Maier,et al.  Precipitate effects on the mechanical behavior of aluminum copper alloys: Part I. Experiments , 2005 .

[26]  R. Fisher,et al.  On the Mathematical Foundations of Theoretical Statistics , 1922 .

[27]  J. Aldrich R.A. Fisher and the making of maximum likelihood 1912-1922 , 1997 .

[28]  J. Hatch,et al.  Aluminum: Properties and Physical Metallurgy , 1984 .

[29]  A. Constantinescu,et al.  TMF criteria for Lost Foam Casting aluminum alloys , 2013 .

[30]  Andrei Constantinescu,et al.  Crack initiation under thermal fatigue: An overview of CEA experience. Part I: Thermal fatigue appears to be more damaging than uniaxial isothermal fatigue , 2009 .

[31]  Stéphane Chapuliot,et al.  A comparison of lifetime prediction methods for a thermal fatigue experiment , 2006 .

[32]  John E. Allison,et al.  The effect of solidification rate on the growth of small fatigue cracks in a cast 319-type aluminum alloy , 1999 .

[33]  Manoj Gupta,et al.  Effect of processing on the microstructural variation and heat-treatment response of a hypercutectic AlSi alloy , 1995 .

[34]  Eric Charkaluk,et al.  Thermomechanical design in the automotive industry , 2004 .

[35]  J. Gruzleski,et al.  The treatment of liquid aluminum-silicon alloys , 1990 .

[36]  Andreas Fischersworring-Bunk,et al.  High temperature fatigue and creep – automotive power train application perspectives , 2007 .

[37]  H. Maier,et al.  Modeling high-temperature stress-strain behavior of cast aluminum alloys , 1999 .

[38]  I. Guillot,et al.  Thermomechanical fatigue and aging of cast aluminum alloy : A link between numerical modeling and microstructural approach , 2002 .

[39]  Stéphane Chapuliot,et al.  A computational lifetime prediction of a thermal shock experiment. Part I: thermomechanical modelling and lifetime prediction , 2006 .

[40]  F. Szmytka,et al.  A reliability analysis method in thermomechanical fatigue design , 2013 .