Generating alternative watershed-scale BMP designs with evolutionary algorithms

The first part of a two-step decision-making framework for watershed-scale stormwater runoff control (Kaini et al., 2008, this meeting) involves identification of the most cost-effective combination of structural BMPs that meet target peak flow and sediment reduction criteria. This paper presents the second half of that framework: simultaneous generation of near-optimal alternative design strategies using a Euclidean distance metric. Structural BMPs included in this model include detention ponds, infiltration ponds, field borders, grade stabilization structures, and grassed waterways. Alternative designs are identified by coupling Soil and Water Assessment Tool (SWAT) and a Species Conserving Genetic Algorithm (SCGA). In addition, we demonstrate SCGA’s flexibility and efficiency at generating alternative designs as well as varying numbers of alternatives. The model is demonstrated on Silver Creek watershed, a sub-watershed of the larger Lower Kaskaskia watershed in southern Illinois.

[1]  Heinz Mühlenbein,et al.  The parallel genetic algorithm as function optimizer , 1991, Parallel Comput..

[2]  Misgana K. Muleta,et al.  Sensitivity and uncertainty analysis coupled with automatic calibration for a distributed watershed model , 2005 .

[3]  R. Vogel,et al.  Optimal Location of Infiltration-Based Best Management Practices for Storm Water Management , 2005 .

[4]  John W. Labadie,et al.  Multiobjective Watershed-Level Planning of Storm-Water Detention Systems , 1997 .

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  Robert G. Traver,et al.  Closure of "Watershed-Scale Evaluation of a System of Storm Water Detention Basins" , 2005 .

[7]  Geoffrey T. Parks,et al.  Engineering design optimization using species-conserving genetic algorithms , 2007 .

[8]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[9]  Goldberg,et al.  Genetic algorithms , 1993, Robust Control Systems with Genetic Algorithms.

[10]  P. John Clarkson,et al.  Erratum: A Species Conserving Genetic Algorithm for Multimodal Function Optimization , 2003, Evolutionary Computation.

[11]  John W. Nicklow,et al.  Multi-objective automatic calibration of SWAT using NSGA-II , 2007 .

[12]  Shaw L. Yu,et al.  Optimal Location and Sizing of Stormwater Basins at Watershed Scale , 2004 .

[13]  Samir W. Mahfoud Niching methods for genetic algorithms , 1996 .

[14]  Luis A. Bastidas,et al.  Multiobjective particle swarm optimization for parameter estimation in hydrology , 2006 .

[15]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[16]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[17]  Ralph R. Martin,et al.  A Sequential Niche Technique for Multimodal Function Optimization , 1993, Evolutionary Computation.

[18]  Yuval Davidor,et al.  A Naturally Occurring Niche and Species Phenomenon: The Model and First Results , 1991, ICGA.

[19]  M. Arabi,et al.  Cost‐effective allocation of watershed management practices using a genetic algorithm , 2006 .

[20]  Claudio De Stefano,et al.  On the role of population size and niche radius in fitness sharing , 2004, IEEE Transactions on Evolutionary Computation.

[21]  Li Chen,et al.  Applying a real‐coded multi‐population genetic algorithm to multi‐reservoir operation , 2007 .

[22]  Emily M. Zechman,et al.  An evolutionary algorithm to generate alternatives (EAGA) for engineering optimization problems , 2004 .

[23]  S. Ranji Ranjithan,et al.  Detention Pond Design and Land Use Planning for Watershed Management , 2003 .

[24]  Ranji S. Ranjithan,et al.  Generating Alternatives Using Evolutionary Algorithms for Water Resources and Environmental Management Problems , 2007 .

[25]  Mazdak Arabi,et al.  Modeling long-term water quality impact of structural BMPs , 2006 .