The reconstruction formula for Banach frames and duality

We study conditions on a Banach frame that ensures the validity of a reconstruction formula. In particular, we show that any Banach frames for (a subspace of) L"p or L"p","q ([email protected]?p<~) with respect to a solid sequence space always satisfies an unconditional reconstruction formula. The existence of reconstruction formulas allows us to prove some James-type results for atomic decompositions: an unconditional atomic decomposition (or unconditional Schauder frame) for X is shrinking (respectively, boundedly complete) if and only if X does not contain an isomorphic copy of @?"1 (respectively, c"0).

[1]  Joram Lindenstrauss,et al.  Classical Banach spaces I: Sequence Spaces. , 1977 .

[2]  Michael Frazier,et al.  Decomposition of Besov Spaces , 2009 .

[3]  J. A. Green,et al.  Sequences and series , 1958 .

[4]  J. Creekmore Type and cotype in Lorentz Lpq spaces , 1981 .

[5]  R. Duffin,et al.  A class of nonharmonic Fourier series , 1952 .

[6]  Peter G. Casazza,et al.  FRAMES FOR BANACH SPACES , 1977 .

[7]  F. Albiac,et al.  Topics in Banach space theory , 2006 .

[8]  C. Heil History and Evolution of the Density Theorem for Gabor Frames , 2007 .

[9]  A. Pełczyński,et al.  Any separable Banach space with the bounded approximation property is a complemented subspace of a Banach space with a basic , 1971 .

[10]  Rui Liu On Shrinking and Boundedly Complete Schauder Frames of Banach spaces , 2009 .

[11]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions, I , 1989 .

[12]  Charalambos D. Aliprantis,et al.  Positive Operators , 2006 .

[13]  K. Gröchenig Describing functions: Atomic decompositions versus frames , 1991 .

[14]  H. Feichtinger,et al.  Banach spaces related to integrable group representations and their atomic decompositions. Part II , 1989 .

[15]  B. Jawerth,et al.  A discrete transform and decompositions of distribution spaces , 1990 .

[16]  H. Feichtinger Atomic characterizations of modulation spaces through Gabor-type representations , 1989 .

[17]  Diana T. Stoeva,et al.  FRAME EXPANSIONS IN SEPARABLE BANACH SPACES , 2005 .

[18]  Joram Lindenstrauss Classical Banach Spaces II: Function Spaces , 1979 .

[19]  R. C. James Bases and Reflexivity of Banach Spaces , 1950 .

[20]  D. Carando,et al.  Duality, reflexivity and atomic decompositions in Banach spaces , 2009 .

[21]  A. Defant,et al.  Tensor Norms and Operator Ideals , 2011 .

[22]  P. G. Casazza,et al.  Coefficient quantization for frames in Banach spaces , 2008 .

[23]  William B. Johnson,et al.  On bases, finite dimensional decompositions and weaker structures in Banach spaces , 1971 .

[24]  O. Christensen An introduction to frames and Riesz bases , 2002 .

[25]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .