Phantom-node method for shell models with arbitrary cracks

A phantom-node method is developed for three-node shell elements to describe cracks. This method can treat arbitrary cracks independently of the mesh. The crack may cut elements completely or partially. Elements are overlapped on the position of the crack, and they are partially integrated to implement the discontinuous displacement across the crack. To consider the element containing a crack tip, a new kinematical relation between the overlapped elements is developed. There is no enrichment function for the discontinuous displacement field. Several numerical examples are presented to illustrate the proposed method.

[1]  P. Hansbo,et al.  A finite element method for the simulation of strong and weak discontinuities in solid mechanics , 2004 .

[2]  K. Bathe,et al.  Development of MITC isotropic triangular shell finite elements , 2004 .

[3]  Ted Belytschko,et al.  Advances in one-point quadrature shell elements , 1992 .

[4]  E. S. Folias On the effect of initial curvature on cracked flat sheets , 1969 .

[5]  Eric P. Kasper,et al.  A mixed-enhanced strain method , 2000 .

[6]  Paul A. Wawrzynek,et al.  An algorithm to generate quadrilateral or triangular element surface meshes in arbitrary domains with applications to crack propagation , 1995 .

[7]  K. Bathe,et al.  A continuum mechanics based four‐node shell element for general non‐linear analysis , 1984 .

[8]  T. Belytschko,et al.  A method for growing multiple cracks without remeshing and its application to fatigue crack growth , 2004 .

[9]  T. Belytschko,et al.  New crack‐tip elements for XFEM and applications to cohesive cracks , 2003 .

[10]  Ted Belytschko,et al.  A method for dynamic crack and shear band propagation with phantom nodes , 2006 .

[11]  Phill-Seung Lee,et al.  On the asymptotic behavior of shell structures and the evaluation in finite element solutions , 2002 .

[12]  P. Pinsky,et al.  An assumed covariant strain based 9‐node shell element , 1987 .

[13]  P. Steinmann,et al.  A finite element method for the computational modelling of cohesive cracks , 2005 .

[14]  Shuodao Wang,et al.  A Mixed-Mode Crack Analysis of Isotropic Solids Using Conservation Laws of Elasticity , 1980 .

[15]  Hiroshi Suemasu,et al.  X-FEM analyses of a thin-walled composite shell structure with a delamination , 2010 .

[16]  Phill-Seung Lee,et al.  Measuring the convergence behavior of shell analysis schemes , 2011 .

[17]  C. H. Furukawa,et al.  On the finite element modeling of fatigue crack growth in pressurized cylindrical shells , 2009 .

[18]  H. Nguyen-Xuan,et al.  A smoothed finite element method for plate analysis , 2008 .

[19]  Ted Belytschko,et al.  Analysis of fracture in thin shells by overlapping paired elements , 2006 .

[20]  Virtual Crack Extension Method for Energy Release Rate Calculations in Flawed Thin Shell Structures , 1987 .

[21]  Paul Steinmann,et al.  Towards the algorithmic treatment of 3D strong discontinuities , 2006 .

[22]  H. Parisch,et al.  A critical survey of the 9-node degenerated shell element with special emphasis on thin shell application and reduced integration , 1979 .

[23]  Ted Belytschko,et al.  Immersed particle method for fluid–structure interaction , 2009 .

[24]  J. W. Eischen,et al.  Computation of stress intensity factors for plate bending via a path-independent integral , 1986 .

[25]  Ted Belytschko,et al.  Dynamic Fracture of Shells Subjected to Impulsive Loads , 2009 .

[26]  J. L. Sanders,et al.  Circumferential Part-Through Cracks in Cylindrical Shells Under Tension , 1982 .

[27]  Ted Belytschko,et al.  A finite element method for crack growth without remeshing , 1999 .

[28]  A. Zehnder,et al.  Fracture Mechanics of Thin Plates and Shells Under Combined Membrane, Bending, and Twisting Loads , 2005 .

[29]  Rakesh K. Kapania,et al.  A survey of recent shell finite elements , 2000 .

[30]  K. Y. Sze,et al.  A quadratic assumed natural strain curved triangular shell element , 1999 .

[31]  Ekkehard Ramm,et al.  EAS‐elements for two‐dimensional, three‐dimensional, plate and shell structures and their equivalence to HR‐elements , 1993 .

[32]  Phill-Seung Lee,et al.  Insight into 3-node triangular shell finite elements: the effects of element isotropy and mesh patterns , 2007 .

[33]  Timon Rabczuk,et al.  A new crack tip element for the phantom‐node method with arbitrary cohesive cracks , 2008 .

[34]  O. C. Zienkiewicz,et al.  Reduced integration technique in general analysis of plates and shells , 1971 .

[35]  T. Belytschko,et al.  Non‐planar 3D crack growth by the extended finite element and level sets—Part I: Mechanical model , 2002 .

[36]  Ted Belytschko,et al.  Modeling fracture in Mindlin–Reissner plates with the extended finite element method , 2000 .

[37]  K. Bathe Finite Element Procedures , 1995 .

[38]  Jean Lemaitre,et al.  Fracture mechanics analysis of pressurized cracked shallow shells , 1977 .

[39]  R. Barsoum,et al.  Analysis of through cracks in cylindrical shells by the quarterpoint elements , 1979, International Journal of Fracture.

[40]  T. Belytschko,et al.  Non‐linear analysis of shells with arbitrary evolving cracks using XFEM , 2005 .

[41]  Martin Fagerström,et al.  Dynamic fracture modeling in shell structures based on XFEM , 2011 .

[42]  S. Atluri,et al.  CALCULATION OF FRACTURE MECHANICS PARAMETERS FOR AN ARBITRARY THREE-DIMENSIONAL CRACK, BY THE ‘EQUIVALENT DOMAIN INTEGRAL’ METHOD , 1987 .

[43]  Ted Belytschko,et al.  Element‐local level set method for three‐dimensional dynamic crack growth , 2009 .

[44]  T. Belytschko,et al.  Physical stabilization of the 4-node shell element with one point quadrature , 1994 .

[45]  O. C. Zienkiewicz,et al.  Analysis of thick and thin shell structures by curved finite elements , 1970 .

[46]  T. Rabczuk,et al.  A Meshfree Thin Shell for Arbitrary Evolving Cracks Based on An Extrinsic Basis , 2006 .

[47]  T. Rabczuk,et al.  A meshfree thin shell method for non‐linear dynamic fracture , 2007 .

[48]  Eduardo N. Dvorkin,et al.  A formulation of general shell elements—the use of mixed interpolation of tensorial components† , 1986 .

[49]  Nguyen Dang Hung,et al.  Analysis of cracked plates and shells using metis finite element model , 2004 .