Signal frequency dependence of ionospheric amplitude scintillations

The S 4 index, which is a measure of the strength of amplitude scintillations, is assumed to vary with signal frequency f according to S 4 αf -n , and the frequency exponent n is derived from observed equatorial amplitude scintillations on 40- and 140-MHz signals. A large data base has been used to study the variation of this exponent n(40/140) with the S 4 index on the 140-MHz signal for both daytime and nighttime scintillation events. Although the equatorial E and F region irregularities, which cause the observed scintillation events, have different characteristics, the variation of n(40/140) with S 4 (140) is found to be almost universal. Theoretical computation of n(40/140) for different values of the irregularity parameters yields results which are in good agreement with these observations.

[1]  H. Chandra,et al.  Multifrequency studies of equatorial ionospheric scintillations at Ootacamund , 1990 .

[2]  K. Yeh,et al.  Intensity correlation function for waves of different frequencies propagating through a random medium , 1988 .

[3]  A. Bhattacharyya,et al.  Phase scintillations due to equatorial F region irregularities with two‐component power law spectrum , 1986 .

[4]  M. Kelley,et al.  The generation of kilometer scale irregularities in equatorial spread F , 1986 .

[5]  A. Bhattacharyya,et al.  Amplitude scintillations during the early and late phases of evolution of irregularities in the nighttime equatorial ionosphere , 1985 .

[6]  R. Sudan,et al.  Unified theory of the power spectrum of intermediate wavelength ionospheric electron density fluctuations , 1984 .

[7]  Steven J Franke,et al.  Multifrequency study of ionospheric scintillation at Ascension Island , 1984 .

[8]  E. Szuszczewicz,et al.  Composite equatorial spread F wave number spectra from medium to short wavelengths , 1983 .

[9]  R. Sudan,et al.  Unified theory of Type I and Type II irregularities in the equatorial electrojet , 1983 .

[10]  S. Basu,et al.  High resolution topside in situ data of electron densities and VHF/GHz scintillations in the equatorial region , 1983 .

[11]  K. Yeh,et al.  Radio wave scintillations in the ionosphere , 1982 .

[12]  C. Rino,et al.  Intensity scintillation parameters for characterizing transionospheric radio signals , 1982 .

[13]  C. Rino,et al.  Simultaneous Rocket-Borne Beacon and In Situ Measurements of Equatorial Spread F - Intermediate Wavelength Results , 1981 .

[14]  Chung Liu,et al.  Statistical properties of transionospherically propagated radio signals under the intense scintillation conditions , 1980 .

[15]  C. Rino,et al.  Spectral characteristics of medium-scale equatorial f-region irregularities. Topical report 1 Jan-29 Feb 1980 , 1980 .

[16]  K. Davies,et al.  ATS‐6 satellite radio beacon measurements at Ootacamund, India , 1979 .

[17]  R. L. Leadabrand,et al.  Early results from the DNA Wideband satellite experiment—Complex‐signal scintillation , 1978 .

[18]  J. Aarons,et al.  On the nature of the electrojet irregularities responsible for daytime VHF scintillations , 1977 .

[19]  K. Davies,et al.  Daytime satellite radio scintillation and sporadic E near the magnetic equator , 1977 .

[20]  K. Davies,et al.  Some early results from the ATS‐6 Radio Beacon Experiment , 1975 .

[21]  K. Yeh,et al.  A theoretical study of the ionospheric scintillation behavior caused by multiple scattering , 1975 .

[22]  K. Yeh,et al.  Effects of multiple scattering on scintillation of transionospheric radio signals , 1974 .

[23]  P. L. Dyson,et al.  In situ measurements of the spectral characteristics of F region ionospheric irregularities , 1974 .

[24]  Clifford L. Rufenach,et al.  Wavelength dependence of radio scintillation: Ionosphere and interplanetary irregularities , 1974 .

[25]  J. R. Jokipii,et al.  Interplanetary Scintillations and the Structure of Solar-Wind Fluctuations , 1970 .

[26]  B. H. Briggs,et al.  On the variation of radio star and satellite scintillations with zenith angle , 1963 .