Modelling of steel welds

AbstractPhysical models for the development of microstructure have the potential of revealing new phenomena and properties. They can also help identify the controlling variables. The ability to estimate quantitatively the weld metal microstructure relies on a thorough understanding of the phase transformation theory governing the changes that occur as the weld solidifies and cools to ambient temperature. Considerable progress has been made with the help of thermodynamic and kinetic theory, which accounts for the variety of alloying additions, non-equilibrium cooling conditions, and other variables necessary to specify fully the welded component. These aspects are illustrated with the aim of presenting a brief account of the methodology and of those problems which have yet to be solved.MST/1499

[1]  H. Bhadeshia,et al.  Lower acicular ferrite , 1989 .

[2]  L. Svensson,et al.  The austenite grain structure of low-alloy steel weld deposits , 1986 .

[3]  B. Gretoft,et al.  A model for the development of microstructure in low-alloy steel (Fe-Mn-Si-C) weld deposits , 1985 .

[4]  H. K. D. H. Bhadeshia,et al.  Transition from bainite to acicular ferrite in reheated Fe–Cr–C weld deposits , 1990 .

[5]  H. Bhadeshia Diffusion-controlled growth of ferrite plates in plain-carbon steels , 1985 .

[6]  J. F. Knott,et al.  Statistical distributions of toughness and fracture stress for homogeneous and inhomogeneous materials , 1986 .

[7]  H. Bhadeshia,et al.  The estimation of non-uniform elongation in low-alloy steel weld deposits , 1990 .

[8]  B. Buchmayr,et al.  Mathematical Description of HAZ Behaviour of Low-alloyed Structural Steels , 1988 .

[9]  R. Trivedi,et al.  Effect of Concentration‐Dependent Diffusion Coefficient on the Migration of Interphase Boundaries , 1967 .

[10]  J. Goldak,et al.  Computer modeling of heat flow in welds , 1986 .

[11]  Michael F. Ashby,et al.  A first report on diagrams for grain growth in welds , 1982 .

[12]  H. Bhadeshia,et al.  Diffusional formation of ferrite in iron and its alloys , 1987 .

[13]  Ø. Grong,et al.  HAZ grain growth mechanisms in welding of low carbon microalloyed steels , 1986 .

[14]  H. Bhadeshia,et al.  A model for the strength of the As-deposited regions of steel weld metals , 1988 .

[15]  H. Bhadeshia Diffusion of carbon in austenite , 1981 .

[16]  H. Bhadeshia,et al.  Model for transition from upper to lower bainite , 1990 .

[17]  J. F. Knott,et al.  Effect of reheating on microstructure and toughness of C–Mn weld metal , 1983 .

[18]  J. Beswick,et al.  Effect of Prior Cold Work on the Martensite Transformation in SAE 52100 , 1984 .

[19]  P. J. Alberry,et al.  Computer model for prediction of heat-affectedzone microstructures in multipass weldments , 1982 .

[20]  P. J. Alberry,et al.  Computer model for predicting heat-affected-zone structures in mechanized tungsteninert gas weld deposits , 1983 .

[21]  R. A. Farrar,et al.  Influence of oxygen-rich inclusions on the γ→α phase transformation in high-strength low-alloy (HSLA) steel weld metals , 1981 .

[22]  J. H. Tweed,et al.  Micromechanisms of failure in CMn weld metals , 1987 .

[23]  H. Bhadeshia,et al.  Thermodynamic analysis of isothermal transformation diagrams , 1982 .

[24]  J. Goldak,et al.  A new finite element model for welding heat sources , 1984 .