Analysis of random non-autonomous logistic-type differential equations via the Karhunen-Loève expansion and the Random Variable Transformation technique

Abstract This paper deals with the study, from a probabilistic point of view, of logistic-type differential equations with uncertainties. We assume that the initial condition is a random variable and the diffusion coefficient is a stochastic process. The main objective is to obtain the first probability density function, f1(p, t), of the solution stochastic process, P(t, ω). To achieve this goal, first the diffusion coefficient is represented via a truncation of order N of the Karhunen–Loeve expansion, and second, the Random Variable Transformation technique is applied. In this manner, approximations, say f 1 N ( p , t ) , of f1(p, t) are constructed. Afterwards, we rigorously prove that f 1 N ( p , t ) ⟶ f 1 ( p , t ) as N → ∞ under mild conditions assumed on input data (initial condition and diffusion coefficient). Finally, three illustrative examples are shown.

[1]  Gabriel Haeser,et al.  On fuzzy uncertainties on the logistic equation , 2017, Fuzzy Sets Syst..

[2]  G. Amato High Temperature Growth of Graphene from Cobalt Volume: Effect on Structural Properties , 2018, Materials.

[3]  P. Massart,et al.  Concentration inequalities and model selection , 2007 .

[4]  S. Aachen Stochastic Differential Equations An Introduction With Applications , 2016 .

[5]  S. Vanucci,et al.  Microbial dynamics during harmful dinoflagellate Ostreopsis cf. ovata growth: Bacterial succession and viral abundance pattern , 2018, MicrobiologyOpen.

[6]  G. Yao,et al.  Hydrogen sulfide inhibits the growth of Escherichia coli through oxidative damage , 2018, Journal of Microbiology.

[7]  C. Braumann,et al.  Fisheries management in random environments: Comparison of harvesting policies for the logistic model , 2017 .

[8]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[9]  F. A. Dorini,et al.  A note on the logistic equation subject to uncertainties in parameters , 2018 .

[10]  Howida Slama,et al.  Solution of the finite Milne problem in stochastic media with RVT Technique , 2017 .

[11]  N. Bershad,et al.  Random differential equations in science and engineering , 1975, Proceedings of the IEEE.

[12]  Fábio Antonio Dorini,et al.  On the linear advection equation subject to random velocity fields , 2011, Math. Comput. Simul..

[13]  Ke Wang,et al.  On a stochastic logistic equation with impulsive perturbations , 2012, Comput. Math. Appl..

[14]  Ke Wang,et al.  A note on stability of stochastic logistic equation , 2013, Appl. Math. Lett..

[15]  Benito M. Chen-Charpentier,et al.  Analytic and numerical solutions of a Riccati differential equation with random coefficients , 2013, J. Comput. Appl. Math..

[17]  G. Grimmett,et al.  Probability and random processes , 2002 .

[18]  Carlos A. Braumann,et al.  Growth and extinction of populations in randomly varying environments , 2008, Comput. Math. Appl..

[19]  P. Verhulst Recherches mathématiques sur la loi d’accroissement de la population , 2022, Nouveaux mémoires de l'Académie royale des sciences et belles-lettres de Bruxelles.

[20]  Ali Lotfi,et al.  Forecasting technology diffusion: a new generalisation of the logistic model , 2014, Technol. Anal. Strateg. Manag..

[21]  Jan‐Åke Nilsson,et al.  Experimentally increased nest temperature affects body temperature, growth and apparent survival in blue tit nestlings , 2018 .

[22]  Fábio Antonio Dorini,et al.  The probability density function to the random linear transport equation , 2010, Appl. Math. Comput..

[23]  S. Iijima,et al.  Low temperature growth of single-walled carbon nanotubes from Rh catalysts , 2017 .

[24]  M. M. Selim,et al.  Solution of the stochastic radiative transfer equation with Rayleigh scattering using RVT technique , 2012, Appl. Math. Comput..

[25]  Juan Carlos Cortés,et al.  Computing the probability density function of non-autonomous first-order linear homogeneous differential equations with uncertainty , 2018, J. Comput. Appl. Math..

[26]  Serdal Pamuk,et al.  The decomposition method for continuous population models for single and interacting species , 2005, Appl. Math. Comput..

[27]  Juan Carlos Cortés,et al.  Random linear-quadratic mathematical models: Computing explicit solutions and applications , 2009, Math. Comput. Simul..

[28]  Leyza Baldo Dorini,et al.  On the logistic equation subject to uncertainties in the environmental carrying capacity and initial population density , 2016, Commun. Nonlinear Sci. Numer. Simul..

[29]  Ingemar Nåsell,et al.  Moment closure and the stochastic logistic model. , 2003, Theoretical population biology.

[30]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[31]  Catherine E. Powell,et al.  An Introduction to Computational Stochastic PDEs , 2014 .

[32]  Tobias Neckel,et al.  Random Differential Equations in Scientific Computing , 2013 .

[33]  E. Allen Modeling with Itô Stochastic Differential Equations , 2007 .