Some time change representations of stable integrals, via predictable transformations of local martingales

From the predictable reduction of a marked point process to Poisson, we derive a similar reduction theorem for purely discontinuous martingales to processes with independent increments. Both results are then used to examine the existence of stochastic integrals with respect to stable Levy processes, and to prove a variety of time change representations for such integrals. The Knight phenomenon, where possibly dependent but orthogonal processes become independent after individual time changes, emerges as a general principle.

[1]  Timothy C. Brown,et al.  A simple proof of the multivariate random time change theorem for point processes , 1988, Journal of Applied Probability.

[2]  O. Kallenberg On the Existence and Path Properties of Stochastic Integrals , 1975 .

[3]  Olav Kallenberg,et al.  Spreading and Predictable Sampling in Exchangeable Sequences and Processes , 1988 .

[4]  O. Kallenberg General wald-type identities for exchangeable sequences and processes , 1989 .

[5]  P. Meyer,et al.  Demonstration simplifiee d'un theoreme de Knight , 1971 .

[6]  M. Yor,et al.  Démonstration d'un théorème de F. Knight à l'aide de martingales exponentielles , 1980 .

[7]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[8]  J. Jacod Calcul stochastique et problèmes de martingales , 1979 .

[9]  J. Jacod Equations Differentielles Stochastiques Et Problemes De Martingales , 1979 .

[10]  William Feller,et al.  An Introduction to Probability Theory and Its Applications , 1967 .

[11]  O. Kallenberg Random time change and an integral representation for marked stopping times , 1990 .

[12]  F. Papangelou Integrability of expected increments of point processes and a related random change of scale , 1972 .

[13]  K. E. Dambis,et al.  On the Decomposition of Continuous Submartingales , 1965 .

[14]  F. Knight A reduction of continuous square-integrable martingales to Brownian motion , 1971 .

[15]  Jan Rosiński,et al.  On Ito Stochastic Integration with Respect to $p$-Stable Motion: Inner Clock, Integrability of Sample Paths, Double and Multiple Integrals , 1986 .

[16]  L. Dubins,et al.  ON CONTINUOUS MARTINGALES. , 1965, Proceedings of the National Academy of Sciences of the United States of America.