Some time change representations of stable integrals, via predictable transformations of local martingales
暂无分享,去创建一个
[1] Timothy C. Brown,et al. A simple proof of the multivariate random time change theorem for point processes , 1988, Journal of Applied Probability.
[2] O. Kallenberg. On the Existence and Path Properties of Stochastic Integrals , 1975 .
[3] Olav Kallenberg,et al. Spreading and Predictable Sampling in Exchangeable Sequences and Processes , 1988 .
[4] O. Kallenberg. General wald-type identities for exchangeable sequences and processes , 1989 .
[5] P. Meyer,et al. Demonstration simplifiee d'un theoreme de Knight , 1971 .
[6] M. Yor,et al. Démonstration d'un théorème de F. Knight à l'aide de martingales exponentielles , 1980 .
[7] L. Rogers. Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .
[8] J. Jacod. Calcul stochastique et problèmes de martingales , 1979 .
[9] J. Jacod. Equations Differentielles Stochastiques Et Problemes De Martingales , 1979 .
[10] William Feller,et al. An Introduction to Probability Theory and Its Applications , 1967 .
[11] O. Kallenberg. Random time change and an integral representation for marked stopping times , 1990 .
[12] F. Papangelou. Integrability of expected increments of point processes and a related random change of scale , 1972 .
[13] K. E. Dambis,et al. On the Decomposition of Continuous Submartingales , 1965 .
[14] F. Knight. A reduction of continuous square-integrable martingales to Brownian motion , 1971 .
[15] Jan Rosiński,et al. On Ito Stochastic Integration with Respect to $p$-Stable Motion: Inner Clock, Integrability of Sample Paths, Double and Multiple Integrals , 1986 .
[16] L. Dubins,et al. ON CONTINUOUS MARTINGALES. , 1965, Proceedings of the National Academy of Sciences of the United States of America.